

Testing Network Softwarization

Pierre Lynch

Lead Technologist, Ixia Solutions Group, Keysight Technologies Chair, TST WG, ETSI NFV ISG

© 2016 IXIA AND/OR ITS AFFILIATES. ALL RIGHTS RESERVED. | 1 © All rights reserved

AGENDA

- Introduction and Background
- Testing Networking in Software
 New features require new methodologies
- Industry Activities
 - ETSI NFV, Open Source

INTRODUCTION AND BACKGROUND

INTRODUCTION

Telecommunications • Networking • Information Technologies The Internet • Wired, Wireless, Satellites and Fiber WANs, MANs, LANs, SANs and PONs • Wi-Fi and WiMAX DSL, Cable and BPL • VolP and IPTV • Ethernet and VPNS and everything voice, data and video – moving or still

NORE THAN 23,500 TERMS DEFINE

23rd Updated and Expanded Edition Harry Newton

TESTING SOFTWARE NETWORKING What's so hard about that?

ISOLATING THE SYSTEM UNDER TEST (SUT)

Physical Elements

ISOLATING THE SUT

- Some VNF functionality has been moved out
- The SUT requires the complete environment in order to run

User Conference on

ISOLATING THE SUT

- Some VNF functionality has been moved out
- The SUT requires the complete environment in order to run
- Test VNFs can be placed to perform simulations

6th

User Conference on

ISOLATING THE SUT

- Some VNF functionality has been moved out
- The SUT requires the complete environment in order to run
- Test VNFs can be placed to perform simulations
- Must maintain the environment constant

User Conference on Advanced Automated Testing

TEST UNIT SELECTION AND PLACEMENT User Conference on Advanced Automated Testing

HW or SW-only

HW-Based

SW-Based

NFVI

Performance Testing

NFVI

Performance Verification

Validating the advertised performance of a SUT

• Benchmarking

Determining the maximum performance of a platform

• Dimensioning

Determining the amount of platform resources required to achieve a performance target

MULTI-TENANCY

- Shared resources change the behavior and predictability
- VNFs can become "noisy neighbors"
- Achieving predictable behavior for other VNFs is the goal
- Platform can become "noisy" too

ACCELERATION

 Various acceleration techniques have appeared DPDK SR-IOV Fast Data - FD.io

 Have various impacts on performance and latency

VNFFG AND NETWORK FORWARDING PATH

 Definition of a network service using VNF Forwarding Graphs

 Establishment of the forwarding path has many options: vSwitch, SDN, etc

 Performance will vary based on networking technologies used

• Slicing!

SCALING

- Dynamic allocation of resources based on trigger criteria
- Criteria can be network, compute or storage based

SCALING

- Dynamic allocation of resources based on trigger criteria
- Criteria can be network, compute or storage based
- Once trigger is reached, resources allocated to instantiate a new VNF-C

SCALING

- Dynamic allocation of resources based on trigger criteria
- Criteria can be network, compute or storage based
- Once trigger is reached, resources allocated to instantiate a new VNF-C
- Test VNFs placed to simulate the required trigger traffic

SW or HW configurations

MANO FUNCTIONS

- VNF Package Mgmt
 Onboarding
- VNF Lifecycle Management
- VNF Performance Management
- VNF Fault Management
- NS Lifecycle Management
- NS Performance Management
- NS Fault Management

DEVOPS AND CI/CD

Opportunity!

DevOps

Combination of different operational areas into one cohesive service delivery team: Dev, QA, Operations, Security, Others as needed Typically associated with an Agile delivery process Small changes - easier to pinpoint failures

- CI/CD: Continuous Integration and Continuous Delivery/Deployment All new system updates and additions are immediately integrated and tested Purpose is to find failures immediately (fail fast, fail forward)
- Automation!

Continuous testing, monitoring and feedback

DEVOPS AND CI/CD

The Pipeline

- SW deployment enables the deployment of test units along with the system
- Sanity tests (and more) can be triggered automatically upon deployment

INDUSTRY ACTIVITIES Who's doing what

© 2018 IXIA AND/OR ITS AFFILIATES. ALL RIGHTS RESERVED. | 22 © All rights reserved

ETSI NFV TST Testing, Experimentation and Open Source

TST001 – PRE-DEPLOYMENT TESTING

• Target audience:

All companies wanting to validate new SW, SW updates CI/CD pipeline

• Content summary

Definition of SUTs

Test methods for pre-deployment validation of SUTs

Pre-deployment validation of NFV Infrastructure

Pre-deployment validation of VNFs

Pre-deployment validation of Network Services

ETSI GS NFV-TST 001 V1.1.1 (2016-04)

Network Functions Virtualisation (NFV); Pre-deployment Testing; Report on Validation of NFV Environments and Services

TST004 – PATH IMPLEMENTATION TESTING

- Guidelines for test plan on path implementation through NFVI
- SUT options
 - Fct placement SDN application type SDN controller type
- Metrics
 - VNFC instantiation time
 Path instantiation
 1st packet latency
 Subsequent packet latency
 Std pkt transfer measurements
- Procedures
- Examples

TST007 – GUIDELINES FOR INTEROP TESTING

- Test Descriptions (Test Cases)
- Interoperability Features Statement
 List of all features that need to be supported
 Referenced by the individual Test Descriptions
 VIM, NFVO, VNFM, EM/VNF
- Features taken from IFA documents
 VNF Package Mgmt, LCM, Fault Mgmt, Performance Mgmt
 NS LCM, Update, Healing, Termination
- Interoperability Testing Guidelines for NFVI-VIM, MANO and VNF
- Detailed collection of test descriptions for most functionality

ETSI GR NFV-TST 007 V1.1.1 (2017-11)

Network Functions Virtualisation (NFV); Testing; Guidelines on Interoperability Testing for MANO

TST009 – NFVI NETWORK BENCHMARKS AND MEASUREMENT METHODS

 Expands the Requirements and Methods of RFC2544

New reality of NFVI platforms are different than dedicated "boxes" of the past

- Benchmark definition
- Test setups
- Test tool requirements
- Methods of Measurement

ETSI GS NFV-TST009 V0.0.15 (2018-08)

Network Functions Virtualisation (NFV); Testing; Specification of Networking Benchmarks and Measurement Methods for NFVI

Rapporteur: Al Morton (AT&T Labs)

BENCHMARKS

For each Benchmark:

- Background
- Name
- Parameters
- Scope
- Units of Measure
- Definition
- Units of Measure
- Sources of Error
- Discussion
- Reporting Format

- Throughput
 - Offered Load Frame Size Offered Load Step Size Min Trial Repetition Interval Trial Duration Max X% Loss Ratio Max # of Trials
- Latency
- Delay Variation
- Loss

TEST SETUP EXAMPLES

6th UCCAAT User Conference on Advanced Automated Testing

MITIGATING BACKGROUND PROCESSES THAT CAUSE ERRORS (LOSS)

Because of the nature of NFVI platform

Andrzej Pelc, "Searching games with errors— fifty years of coping with liars ", Theoretical Computer Science 270 (2002) 71–109. Available from https://www.gwern.net/docs/statistics/comparison/2002-pelc.pdf

© 2016 IXIA AND/OR ITS AFFILIATES. ALL RIGHTS RESERVED. | 30

BINARY SEARCH WITH LOSS VERIFICATION

• Goal

Separate resource exhaustion and loss due to transient processes

They are dealt with in separate ways

• Solution

If a trial fails because of loss (< z), run the trial again with the same stimulus (Max (r) = 2)

Keep trials short to avoid transients

Isolate loss due to transients

Run long duration tests to characterize effects and frequency

Prototyped with OPNFV Showed marked success in repeatability

TST010 – MANO API CONFORMANCE TEST SUITE

• For 3 Reference Points:

Os-Ma-Nfvo - ETSI GS NFV-SOL 005 Or-Vnfm - ETSI GS NFV-SOL 003 Ve-Vnfm - ETSI GS NFV-SOL 002

Document + Automatable Test Descriptions
 OpenAPIs developed by the SOL WG
 Using the open source Robot Framework

- Functest Integration
- Potential Instrumented Platform

Network Function Virtualisation (NFV) Release 2; Testing; API Conformance Testing Specification Release #2

GROUP SPECIFICATION

TST011 – TEST DOMAIN AND DESCRIPTION LANGUAGE RECOMMENDATIONS

- NFV Test Domain with automation ecosystem
- Recommendations for a DSL (Domain Specific Language)

ETSI GR NFV-TST011 V0.0.3 (2018-08)

Network Functions Virtualisation (NFV); Testing; Test Domain and Description Language Recommendations Release #

Rapporteur: Frank Massoudian (Huawei)

TST012 - VIM & NFVI CONTROL AND MANAGEMENT PERFORMANCE EVALUATION

- Focus on the control plane performance of VIM + NFVI
- Based on functional requirements in ETSI GS NFV-IFA010
- Potential Metrics:

Virtualization container instantiation

Scaling

Migration

• Delicate!

VNFs can impact these metrics

Care will be taken to define the metrics and methods to be independent of VNF (maybe use standard samples)

ETSI

Rapporteur: Huang Cheng (Huawei)

3RD NFV PLUGTESTS & OPNFV PLUGFEST

CROSS-COMMUNITY SYNERGY & JOINT ACTIVITIES

- Several cross-community activities:
- TST009 Testing specification of networking benchmarks and measurement methods for NFVI
- TST010 API conformance testing specification

- 6th UCCAAT User Conference on Advanced Automated Testing
- NFVI validation track (Dovetail)
- OSM integration in OPNFV XCI
- NSH based SFC Testing

RESULTS HIGHLIGHTS

- Most of the interop testing focused on multi-vendor NS
 - More Test Cases run in fewer (but longer) Test Sessions

• Interop rates similar to January (slightly higher)

+175% of automated interop testing

• Learnings to guide TST010 NFV Conformance Testing

OVERALL RESULTS

Overall Results	Number of Test Sessions	Interoperability (TCs Run)		TCs Not Run	TCs Totals	
		ОК	NO	NA	Run	Total
	97	736	95	636	831	1.467

Table 27a: IOP Overall Results

Overall Results	Number of Test Sessions	API Validation (TCs Run)		TCs Not Run	TCs Totals	
		OK	NO	NA	Run	Total
	9	58	25	28	83	111

Table 27b: API Track Overall Results

Figure 23. IOP Overall results 3rd NFV Plugtests (%)

Figure 24. API Track Overall results 3rd NFV Plugtests (%)

OPEN SOURCE Young Guns

OPNFV: UPSTREAM FIRST

- OPNFV is an integration project, incorporating other open source components to create a platform for NFV
- Most of the development in OPNFV is actually on upstream projects

OPNFV SCOPE

TESTING PROJECTS

Name	Purpose	Notes
Pharos	Infrastructure - Federated labs for CI and feature testing	12+ labs available
Functest	Feature testing (production deployment)	Umbrella test project with database/API and dashboard
Yardstick	Framework with generic test cases for NFVI (compute, storage and networking)	Framework and methodology for other test projects to plugin
VSPERF	Virtual switch benchmarking	Methodology and tools
CPERF	Controller performance benchmarking	
Qtip	Platform component benchmarking	Compute, storage, NW tests
Storeperf	Tool to measure block and object storage performance of an NFVI	
Bottlenecks	Framework to look for system constraints	
NFVBench	L2/L3 forwarding performance	Black Box approach using open source tools (T-Rex)

OPNFV YARDSTICK

• Framework and methodology for NFVI testing

OPNFV YARDSTICK (CONT)

- Part of CI pipeline daily execution
- Test cases

Generic Test Cases for NFVI verification (compute, storage, network) Test cases for OPNFV Projects: HA, SFC, SDNVPN, IPVSIX, VNFFG, KVM

Execute Yardstick Generic Test cases for OVS4NFV, ARMBAND

CROSS-COMMUNITY CI (XCI)

- New considerations for testing methodologies SUT Isolation Test Unit Selection and Placement
- New functionality

Multi-Tenancy Acceleration VNFFG & Network Forwarding Path, Slicing Scaling MANO

New possibilities

DevOps and CI/CD

• SDOs and Open Source very active!

Insert your logo here right click> change picture