
A BEGINNER'S GUIDE - UI TESTS FOR IOS
Presented by Václav Vidoň 

© All rights reserved



Agenda

2

● General background of our apps

● Our tools for automation

● Basic rules for UI testing

● Our CI/CD settings

● Discussion? 

© All rights reserved



General background of our apps

3 © All rights reserved

Android

● Kotlin / Java

● ~120k new installs monthly

● ~277k active users monthly
● https://play.google.com/store/apps/details?id=com.skypicke

r.main

iOS

● Swift / Objective-C

● ~140k new installs monthly

● ~330k active users monthly
● https://itunes.apple.com/cz/app/kiwi-com-cheap-flight-

tickets/id657843853



General background of our apps

4 © All rights reserved

Android

● Espresso

● UIAutomator

● Kotlin

iOS

● XCTest

● Own utilities (based on 

XCTest)

● Swift



XCTest

● Used for performing tasks with UI

- Tapping

- Typing text

- Scrolling….

● For iOS only and by Apple

● Works with native apps, multiplatform integrations and webviews

● XCTest

● Contains test recorder (Good, right?) 

5 © All rights reserved



Espresso & UIAutomator

● Used for performing tasks with UI

- Tapping

- Typing text...

● For Android, by Google 

● Works with native apps, multiplatform integrations and in-app webviews

● Espresso + UIAutomator

● Contains test recorder and ui inspector (Good, right?)

6 © All rights reserved



Multiplatform solutions?s

● Appium/Selenium/Katalon studio…

● Still rely on native frameworks - XCTest/Espresso + UIAutomator

● Slower and expensive

● While you can use same test layout (names of methods etc), you still have

to have 2 sets of code within these methods

● Not the best CI/CD implementation, compared with xcode line 

tools/gradlew

https://medium.com/qaworks/appium-vs-native-frameworks-a-comparison-10c09c6c7e48

https://stackoverflow.com/questions/46044804/ios-automated-tests-xctest-vs-appium/46064202#46064202

7 © All rights reserved



How should a good UI test look like?

● Stability
○ Test 
○ Framework
○ Simulators/devices

● Maintainability
○ Easy to debug/fix
○ Framework is evolving with the systems

● Speed
○ Of test/development/fix

8 © All rights reserved



9 © All rights reserved



10 © All rights reserved



11 © All rights reserved



Basic rules o a good UI test

● Don't rely on test recorder

● Make a use of console

● Deal with asynchronous events correctly

● Use IDs to identify elements

● Store path to elements in variables

● Use methods for repetitive test code

● Use setUp/tearDown/annotations

12 © All rights reserved



13 © All rights reserved



14 © All rights reserved



Deal with async events correctly

● Don't use “sleeps”

● Use “waits” instead

● What’s the difference?

15 © All rights reserved



Identify elements properly

• Any UI element - Button, textfield...

• How to identify element? 

• Element’s accessibility ID (or other such ID)

• Element’s string

• Element’s position (absolute/relative to something)

• Element's index

16 © All rights reserved



17 © All rights reserved



18 © All rights reserved



Store paths to elements in variables

19 © All rights reserved



Use methods for repetitive test code

20 © All rights reserved



21 © All rights reserved



Use setUp/tearDown 

22 © All rights reserved



Questions?

23 © All rights reserved


