Seamless And Unified TTCN-3 Test Environment For Spatially Distributed IoT, 5G and Radio Technologies

Presented by [Jubin Sebastian E]
Supervised by [Prof. Dr.-Ing. Axel Sikora]
Who we are?

- Institute of Reliable Embedded Systems & Communication Electronics (ivESK)
 - Prof. Dr.-Ing. Axel Sikora

- stack development
- test & verification
- hw-sw-co-design
- embedded platforms - embedded Linux
- embedded software engineering
- security

Team: 12 full time engineers / PhD candidates
~10 student jobs

Industrial Partners
Agenda

- Introduction
- Problem Analysis
- Seamless and Unified Test Environment
- Virtual Testbed for Embedded Networking Nodes (VTENN)
- Automated Physical Testbed (APTB)
- Example test case
- Conclusion
Introduction

- Spatially Distributed Wireless Networks (SDWN) technologies for IoT and Industry 4.0 case cases
 - Devices are usually,
 - spatially distributed
 - battery driven
 - resource constrained
 - less expensive
 - They require wireless connectivity with,
 - low data rate
 - narrow bandwidth
 - wide coverage
 - long battery life
 - low cost

Which is the suitable wireless connectivity for this use case?

- Short Range Wireless Networks (SRWN)
- Low Power Wide Area Networks (LPWAN)
- Cellular IoT (cIoT) Networks (also specified as 5G technologies)
Motivation

• Role of functional testing in SDWN
 • during system development cycle
 • for systematic comparison

• Challenges of functional testing in SDWN
 • communication devices are resource constrained
 • connectivity is via wireless channel
 • operate in complex topologies
 • complex mechanisms such as MAC, routing, network management

Need of **Seamless and unified** test environment for SDWN
Problem Analysis

- Existing functional test solutions
 - technology specific
 - start testing at system level

- Multiple test platforms with different levels of abstraction

- Testcases are described differently

<table>
<thead>
<tr>
<th>System Aspects</th>
<th>Network Simulation</th>
<th>Network Virtualization</th>
<th>Network Emulation</th>
<th>Field Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>abstracted</td>
<td>real</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>Protocol implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Abstraction Layer</td>
<td>abstracted</td>
<td>abstracted</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>Transceiver IC</td>
<td>abstracted</td>
<td>abstracted</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>Radio Channel</td>
<td>abstracted</td>
<td>abstracted</td>
<td>abstracted</td>
<td>real</td>
</tr>
</tbody>
</table>
Seamless and unified test environment - Requirements

• Flexible and shall provide a **uniform environment**

• It should use an identical test description language and should **support identical test case description** in various abstraction levels

• The environment should have an **option to control System Under Test (SUT) remotely**

• The environment needs a **centralized control**

• The environment should have an **identical performance measurement and analysis** options
Seamless and unified test environment - Novel architecture

- Test description and execution
 - Test ports / interfaces (i/p)
 - Network simulation
 - Network virtualization
 - Network emulation
 - Field test
 - Test ports / interfaces (o/p)
 - System under test
 - Measurement devices & analysis tools
Seamless and unified test environment - implementation

Eclipse Titan
TTCN-3 based test framework

network simulation

virtual testbed

emulated testbed

field testbed

In house developments

Virtual Testbed for Embedded Networking Nodes (VTENN)

Automated Physical Testbed (APTB)
Seamless and unified test environment – TTCN-3 Integration

Eclipse Titan TTCN-3 Framework

- Run time configuration
- Main Test Component
- CTI
- CI
- LCM
- Dispatcher interface
- Test ports (LCM/Serial/TCP)
- Test Interface

Host 1: Eclipse Titan TTCN-3 Framework

Host 2: Dispatcher

SUT on various test platforms

- Network manager
- Upper Tester
- SUT
- Simulation / Lab tests / Emulated testbed / field testbed
Virtual Testbeds

- Virtualized Testbed for Embedded Networking Nodes (VTENN)

- Virtual nodes in PC environment, where each node execute the original embedded code

- Different nodes are running in parallel and are connected via so called virtual interfaces
Emulated Testbed

- Automated Physical TestBeds (APTB)
- Automated testing environment with physical networking nodes
- Wired connection of RF elements
- Antenna outputs to RF waveguide
- Static and dynamic path characteristics
Automated Test Flow

<table>
<thead>
<tr>
<th>Test Case Scenario Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF characteristics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration of SUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring and Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs and Statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Result Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>System / Functional Tests</td>
</tr>
</tbody>
</table>
Continuous Integration

Unified test case description

User Conference on Advanced Automated Testing
Example testcase – LPWAN & cIoT

- **System Tests**
 - Key performance metrics measurements
 - Functional behaviour tests

- **Protocol Tests**
 - NB-IoT L1 procedures
 - NB – IoT Initial Access
 - NB-IoT L2 procedure (RRC, NAS)

- **Performance measurements**
 - RF coverage
 - Signal quality
 - Packet loss rate
 - Payload flexibility
 - Energy consumption measurements

- **LPWAN & cIoT Test and Verification**
Conclusion

• Significantly contribute to fulfil the lack of seamless and unified test environment for distributed wireless networks

 • Novel unified function test environment architecture

 • unified test case description and test method

 • support to use same code branch on various test platforms