ALGEBRAIC METHODS OF MODEL-BASED TESTING OF DISTRIBUTED SYSTEMS

Presented by Dr. Oleksandr Letychevskyi
Glushkov Institute of Cybernetics, Kyiv, Ukraine
Our Algebraic Approach

• Glushkov’s algebraic school is known from early 70-th: automated theorem proving;
• Algebraic Programing System (1990): symbolic computations, rewriting rules technique;
• Insertion Modeling (2000): generalization of transition systems interaction, theory of agents and environments;
Our Experience in MBT

- Motorola projects. Creation of test model behavior algebra specifications, generation of traces by symbolic modeling, concretizing and test creations (TAT technology);
- Generation of tests for legacy code testing. Conversion of Cobol programs to behavior algebra specifications and symbolic trace generation;
- Technology of white-box MBT;
- Decentralized (blockchain) systems testing. Extension of behavior algebra by usage of quantifiers, symbolic modeling of multiagent environment.
Problem Statement

• We have distributed system consisting of the nodes interacting with each other by messages.

• Model-Based Testing is:
 • Creation of test model from requirements or design specifications;
 • Execute the system due to the behavior of the test model;
 • Check for compliance of system with model.

• Network can be heterogenous.
Problem Statement

• Problems in testing of distributed system
 • Exponential explosion due to high interleaving of concurrent processes;
 • What is coverage? How many entities are needed?
• Redundant testing;
• Time-consuming testing, problem of testing harness;
• Thresholds, overloading;
• Leveraging of abstract levels;
• When stop the test generation?
Behavior Algebra as Specifications for Test Model

• Within the scope of the insertion modeling method we use the behavior algebra specifications for the formalization of the project introduced in 1997, by D. Gilbert and A. Letichevsky.

• The operations are the prefixing $a.u$ (where a is an action and u is a behavior) and non-deterministic choice of behaviors $u + v$. The terminal constants are successful termination Δ, deadlock 0, and unknown behavior \perp. The approximation relation \sqsubseteq is a partial order on the set of behaviors.

• $B_0 = a_1.a_2.B_1 + a_3.B_2, \; B_1 = a_4, \; B_2 = ...$

• The behavior algebra is also enriched by two operations: parallel (||) and sequential (;) compositions of behaviors.
Behavior algebra operations can be mapped to the UCM. It is used for visualizing the graphical scenario that corresponds to behavior algebra expressions.
Behavior Algebra. Actions.

• Every action is also defined by a couple, namely, the **precondition** and **postcondition** of an action, given as an expression in some formal theory.

\[
\text{Action}(A,B) = (A > B) \land \neg (A == 0) \rightarrow B = (B + 1)/A
\]

The semantic of the action presented in C-like syntax means that if precondition \((A > B) \land \neg (A == 0)\) is true for concrete values of \(A\) and \(B\) or is satisfiable for symbolic (arbitrary) values of \(A\) and \(B\), then we can change attribute \(B\) by the assignment \(B = (B + 1)/A\). The action can be parametrized by the attributes used in the action’s conditions.

Action presented as MSC diagram. The transition between two states can be illustrated by MSC statement (message sending, local actions).
Example of Consensus Protocol

- The nodes work concurrently and in terms of insertion modeling, their high-level behavior B_0 can be presented by the following behavior algebra expression:

$$B_0 = B;B_0 + \Delta,$$

$$B = \text{NextTimeSlot.}(B1 || B2 || \ldots || Bn)$$

or

$$B = \text{NextTimeSlot.}(\bigparallel Bi, 1\leq i\leq n)$$

$$Bi = F || R || S,$$

$$F = f1.f2.B,$$

$$R = r1.R + r2.R + r3.R + B,$$

$$S = s1.S + s2.S + B$$
Example of Consensus Protocol

- During its time slot, each validator can perform the following concurrent actions:
 - form a block during predefined time slot \(f_1 \), create references for other blocks, and send block \(f_2 \);
 - receive blocks \(r_1 \) and send/receive positive gossip messages about the receiving of missed blocks \(r_2/r_3 \);
 - send/receive negative gossip messages about missed blocks in the previous time slot \(s_1/s_2 \).

\[
\begin{align*}
 f_1 &= (\text{timeslot} == \text{blockID}) \rightarrow p(f_1) \text{ (BlockCreation())}, \\
 f_2 &= 1 \rightarrow p(f_2) \text{ (ReferenceCreation())}, \\
 r_1 &= \sim(\text{timeslot} == \text{blockID}) \rightarrow p(r_1) \text{ ReceiveBlock()}, \\
 r_2 &= 1 \rightarrow p(r_2) \text{ (SendBlock())}, \\
 r_3 &= 1 \rightarrow p(r_3) \text{ (ReceiveBlock())}, \\
 s_1 &= \text{BlockMissed()} \rightarrow p(s_1) \text{ SendGossip()}, \\
 s_2 &= 1 \rightarrow p(s_2) \text{ ReceiveGossip}
\end{align*}
\]
Symbolic Modeling of Behavior Algebra Expressions

- The initial state of agents can be presented by an initial formula. Starting from the initial formula, we can apply actions corresponding to the behavior algebra expression.

- An action is applicable if its precondition is satisfiable and consistent with the current state. Starting from the formula of the initial state S_0 and from the initial behavior B_0, we select the action and move to the next behavior.

- In the first step, we check the satisfiability of the conjunction

\[S_0 \land Pa_1 \]

if $B_0 = a_1.B_1$ and Pa_1 is a precondition of a_1.

The next state of the environment is obtained using a predicate transformer, that is, the function PT over the current agent state, precondition, and postcondition.

\[PT(S_i, Pa_i, Qa_i) = S_{i+1} \]

- By applying the predicate transformer function to different agent states, we can obtain the sequence S_0, S_1, \ldots of formulas that express the agent states changing from the initial state. We present the trace by the sequence of actions a_1, a_2, \ldots.
MB testing

Node 1

Node 2

...

Node N

Blockchain Protocol Messages

Test Running Environment

Symbolic Modeling (Test Generation)

Symbolic Test Suite

Test Concretization

Test Suite
Every Node has triggering (user) actions that initiate transaction. Special library is used for test harness especially for checking of the environment conformance and initiating triggering events.
Permutability.

• What is permutability?

\[B = a_1 \parallel a_2 = a_1 \cdot a_2 + a_2 \cdot a_1 \]
\[a_1 = (\alpha, a), \ a_2 = (\beta, b) \]

Two actions are **statically permutable** if

\[pt(\alpha \land pt(\alpha \land \beta, b), a) = pt(\beta \land pt(\alpha \land \beta, a), b) \]
\[pt(\alpha \land pt(\neg \alpha \land \beta, b), a) = 0 \]
\[pt(\beta \land pt(\alpha \land \neg \beta, a), b) = 0 \]

\[B = a_1 \parallel a_2 = a_1 \cdot a_2 \]

It is not necessary to consider behavior \(a_2 \cdot a_1 \) in test generation
Behavior Equivalence

Trace equivalence.
Two behaviors B_1 and B_2 are **trace equivalence** if $T(B_1) \Leftrightarrow T(B_2)$ where $T(B)$ is the set of linear behaviors $b_1.b_2. \ldots$

Partial trace equivalence of behaviors B_1 and B_2 if $T(B_1) \subseteq T(B_2)$

Context bi-similar equivalence of behaviors B_1 and B_2 if $T(B_1) \Leftrightarrow T(B_2)$
$Preinv(B_1) \Leftrightarrow Preinv(B_2)$
$Postinv(B_1) \Leftrightarrow Postinv(B_2)$

Equivalence is proving by rewriting technique with symbolic modeling

Generation of tests and coverage can be defined up to equivalence
Other properties

• Monotonicity of preinvariants (reducing of cycles);
• Encapsulation of behavior into action with definition of pre- and postinvariant;
• Transformation of behavior (reducing of parallel composition, elimination of multiple transition, exclusion of transit vertex, reducing of permutable paths)
• User defined equivalences and permutabilities
Symbolic dynamic testing

• Symbolic dynamic (online) testing means modelling of **controlled** parallel composition of testing and tested model in behavior algebra environment;
• For this purpose we should translate code to behavior algebra expressions;
• Controlled parallel composition means implementation of trigger initialization algorithm with strategies

```c
main() {
    int A=0,B=0,D, A_OUT = 0, B_OUT = 0;
    for (i=0;;i++) {
        if (A==0) A = load();
        if (B==0) B = load();
        if (A>=15) {A_OUT = A_OUT + 15; A = A - 15;}
        else {A_OUT = A_OUT + A; A = 0;}
        PERCENT_A(&A_OUT);
        if (B>=9) {B_OUT = B_OUT + 9; B = B - 9;}
        else {B_OUT = B_OUT + B; B=0;}
        PERCENT_B(&B_OUT);
        if ((A_OUT <= B_OUT) && (A_OUT < 10)) {D = A_OUT; A_OUT = 0; B_OUT = B_OUT - A_OUT;}
        if ((A_OUT > B_OUT) && (B_OUT < 10)) {D = B_OUT; B_OUT = 0; A_OUT = A_OUT - B_OUT;}
        if (A_OUT==B_OUT)&&(A_OUT>=10)/(A_OUT>B_OUT)&&(A_OUT>=10)
            {A_OUT=A_OUT -10; B_OUT=B_OUT -10; D=10; }
    }
    produce(D);
}
```
Symbolic dynamic testing

Checking for conformance
• Y – expected, X – current environment
• Y & ~X – unsatisfiable – test OK
• Y & ~X – satisfiable – test can continue but there exist states that are unexpected (Z = Y & ~X)
• X & Y – unsatisfiable – test failure

Benefits:
• We don’t need test generation;
• Possible more deep checking;
• Coverage of states.
Experiment 1. (symbolic dynamic testing)

Node1

Node2

Node3

Node4

Covered code lines up to trace equivalence
Experiment 2. (symbolic dynamic testing)

Node1

Node2

Node3

Node4

Covered code lines up to context bisimilar equivalence
Problem of symbolic testing for arbitrary number of nodes

This problem shall be decided in the scope of proving of equivalency of state without test generation.
Verification and Case Generation

Checking of inconsistency and incompleteness in the behavior algebra expressions

\[\bigcap a_i = 0 \]
\[\bigcup a_i = 1 \]

Checking of safety properties
Generation of counterexample as test
Conclusions and Future Usage of Algebraic Approach

Algebraic approach showed its efficiency in test generation and reducing of test number. Anyway some questions are still open: optimal coverage, optimal number of entities. New properties in the scope of behavior algebra shall be researched.

Future research:
Fuzzing techniques
Modeling of attacks
Thank you!