
Budapest, 26-28 October 2016

SECURITY	TESTING	USING	MODELS	AND	TEST	PATTERNS

Presented	by	[Bruno	Legeard,	Elizabeta	Fourneret]	

© All rights reserved



MODEL-BASED	SECURITY	TESTING
Positionning with	respect	to	the	state	of	the	art

© All rights reserved



Model-Based	Testing

3

• Model-Based	Testing	(MBT)	is	based	or	involved	on	
models,	called	MBT	models

• It	extends	and	supports	classic	test	design	techniques	
integrating	closely	with	the	existing	lifecycle	in	an	
enterprise.

©All rights reserved



MBT	Process

Functional
tests

Manual
execution

& scripts for 
automation

Test Repository
(Excel, HP/ALM…)

Test design and implementation

Functional needs
Business needs
Requirements 

Functional
tests



MBT	Process

Functional
tests

Manual
execution

& scripts for 
automation

Test Repository
(Excel, HP/ALM…)Functional needs

Business needs
Requirements 

Functional
tests

Modeling for test generation

Automatic or manual test
conception



MBT	Taxonomy
Utting et	al.’12

6 © All rights reserved



What	are	the	benefices	of	MBT	from	industry	
point	of	view	?

7 © All rights reserved

0%

20%

40%

60%

80%

100%

Our test design 
shall become 
more efficient 

(“cheaper tests”).

Our tests shall 
become more 

effective (“better 
tests”).

Models shall help 
us to manage the 
complexity of the 

system with 
respect to testing.

We wish to 
improve the 

communication 
between 

stakeholders.

Models shall help 
us to start test 
design earlier.

What do you expect from a model-based approach to testing?

Expectations	of	MBT	practitioners	(from	2014	MBT	User	Survey	)



What	are	the	MBT	pitfalls	and	drawbacks?	

• MBT	does	not	solves	all	problems
• MBT	is	not	just	a	matter	of	tooling
• MBT	models	are	not	always	correct
• MBT	generates	a	myriad	of	test	cases	how	to	deal	
with	this	high	number	?

8 © All rights reserved



Model-Based	Security	Testing

• What	are	the	challenges	in	Security	Testing	?

• Where	MBT	stands	for	Security	Testing	?

9 © All rights reserved



Security	Testing Approaches

Code	
review

Manual
Penetration
Testing

Static	
Application	
Security	
Testing	
(SAST)

Dynamic	
Application	
Security	
Testing	
(DAST)

Manual
Techniques

Automated
Techniques

Static	Techniques Dynamic	Techniques

Intrusive	proxies	
(Burp	suite,
Webscarab,	…)

Vulnerability	
Scanners,
Fuzzing	tools,	…



Security	Testing Approaches

Code	
review

Manual
Penetration
Testing

Static	
Application	
Security	
Testing	
(SAST)

Dynamic	
Application	
Security	
Testing	
(DAST)

Manual
Techniques

Automated
Techniques

Static	Techniques Dynamic	Techniques

Intrusive	proxies	
(Burp	suite,
Webscarab,	…)

Vulnerability	
Scanners,
Fuzzing	tools,	…



DAST	Approaches

• Rely on a variety of techniques to compute black-box test cases
• Patterns, 
• Fuzzing, 
• Model-checking, etc.

• Promising results for pattern-based techniques
• Better detection rates than scanners
• Less time consuming than manual penetration testing
• Test execution integrated within large-scale testbeds

7/5
3

Model-based Security Testing (MBST) Approaches



IN	PRACTICE	
Pattern-driven	and	Model-Based	Security	Testing

© All rights reserved



Objectives	in	theory	and	in	practice

14

• Objective	1	:	Improve	the	coverage	of	security	
requirements,	keeping	overall	traceability

• Objective	2 :	Increase	the	fault	detection	capability	of	
the	test	suite

• Objective	3:	Cost-effectiveness

©All rights reserved



Pattern-based	process	to	reach	the	objectives

Identification	of	
vulnerabilities	&	
security	requirements

Definition	of	security	
test	requirements

15 © All rights reserved

Step 1

Step 2

Step 3
Formalization	of	security	
test	requirements

Security	Test	
Repository



MBT	Process	for	security	testing

Functional
tests

Manual
execution

& scripts for 
automation

Test Repository
(Excel, TTCN-3, ALM…)

Security needs &
requirements 

Functional
tests

Modeling for test generation

Automatic or manual test
conception

Risk	
Analysis

Security
Test 

Purposes

Security	
Test	

Patterns



MBT	Process	for	security	testing

Functional
tests

Manual
execution

& scripts for 
automation

Test Repository
(Excel, TTCN-3, ALM…)

Security needs &
requirements 

Functional
tests

Modeling for test generation

Automatic test
generation

Risk	
Analysis

Security
Test 

Purposes

Security	
Test	

Patterns

MBT	
Tool



Background
on	the	MBT	Approach

MBT	
Tool



Background
on	the	MBT	Approach

MBT	
Tool

Behavioral modeling notation (UML4MBT) based on UML metamodel:
➢ Class diagrams specify the static structure 
➢ Object diagrams specify concrete entities and initial state 
➢ OCL (Object Constraint Language) to describe its behavioral characteristics



Background
on	the MBT	Approach

Test selection depending on two test characteristics:
➢ Functional behavioral testing → activate all behaviors
➢ Security testing → formalization of test scenarios using temporal properties 

(TOCL) and test patterns (TP) 

Test generation relies on symbolic state exploration of the model:
➢ Functional behavioral testing → A test target per behavior to activate
➢ Security testing → Test targets derived by unfolding each TOCL and TP

MBT	
Tool



MBT	
Tool

Test cases may be published for test management and execution tools:
➢ HP Quality Center, TestLink, etc.

Test cases must be concretized to be made executable:
➢ Conformity table between abstract data and concrete data
➢ Implementation of class operations



TOCL	and	TP	test	selection	criteria

• TOCL and	TPmake	possible	to	generate	tests	that	exercise	
corner	cases,	relevant	when	testing	security	properties	and	
vulnerabilities

• TOCL allows	to	express temporal	properties,	for	instance	of	
succession	or	precedence,	contributing	to	the	MBT	process	
with:
• Evaluation	of	the	existing	tests	coverage
• Verification	of	the	model’s	conformance	to	these	properties
ØSimplifying	the	model	debugging

• TP allow	to	express	in	terms	of	procedures	of	tests	based	on	a	
verbose	representation	and	using	the	experts	experience	and	
knowledge	on	the	system	vulnerabilities



• TOCL = Temporal OCL
• overlay of OCL to express temporal properties
• based on Dwyer et al. property patterns [DAC99]
• does not require the use of a complex formalism (e.g. LTL, 

CTL)

• TOCL Property = Pattern + Scope
• Pattern: describes occurrences or orderings of events

(always, never, eventually k times, precedes, follows)
• Scope: describes the observation window on which the 

pattern is supposed to hold
(globally, between, after, before)

Design	of	Temporal	Properties	using	TOCL

[DAC99] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state verification. ICSE'99.



Test	Patterns
• Test	Purpose	Language

• relies	on	the	use	of	keywords to	represent	a	test	scenario	
expressing	a	combinations	of	test	steps	and	test	input	parameters

• powerful	and easy	to	read	by	test	engineers
• does	not	require	the	use	of	a	complex	formalism	(e.g.	LTL,	CTL)

• Test	Purpose	(TP)	=	Quantifiers	+	Blocks
• Quantifiers:	describes	the	context	in	which	an	action	defined	by	

the	block	will	be	activated
• (for_each behavior $X	from {list})

• Blocks:	describes	the	actions	to	be	taken	in	order	to	activate	a	state	
in	the	model
• (use any_operation any_number_of_times to_active $X)



MBT	Process for	Security	Testing

Test	
repository

MBT 
model

Security	
Component

Execution

Publication

Functional	
Requirements

Coverage	
monitoring

TOCLTP
Structural test selection Dynamic test selection

Evaluation

Security 
Properties

System	
Under	Test

5’’5’

1 23

4

MBT	
Tool



EXPERIENCE	IN	SECURITY	
COMPONENTS	TESTING

© All rights reserved



Experience	in	security	components	testing

Security	Components	have	two	
categories	of	test	requirements:

- Functional	Requirements
- Security	Requirements



Experience	in	security	components	testing

• PKCS#11 is	an	RSA	standard	that	defines	an	interface	called	
Cryptoki to	promote	interoperability	and	security	of	cryptographic	
tokens.

• Scope:	24 functions most	commonly	present	in	the	tokens,	such	as	
session, token, key and user management functions,	as	well	as	
cryptographic	functions	for signing messages and verifying 
signatures. 

• To	ensure	the	repeatability	of	the	MBT	process	we	chose	SoftHSM -
virtual	cryptographic	store	largely	used	for	exploring	PKCS#11	
without	the	necessity	to	posses	an	HSM		(created	by	the	group	
OPENDNSSEC).

28 © All rights reserved



PKCS#11:	Functional	description
Specification documents :



PKCS#11:	Functional	requirements



Class Diagram:
à represents the business objects that can be used by the System 
Under Test
à classes own operations that can be called on the system under test 
(control and observation points)

OCL:
à represents the expected behavior of an operation on the System 
Under Test, regarding the system state and the operation parameters

The test model is a System Under Test abstraction, representing its
expected behavior.

Instance Diagram:
à represents the initial state of the System Under Test

PKCS#11:	Test	model



Class Diagram:
à represents the business objects that can be used by the System 
Under Test
à classes own operations that can be called on the system under test 
(control and observation points)

OCL:
à represents the expected behavior of an operation on the System 
Under Test, regarding the system state and the operation parameters

The test model is a System Under Test abstraction, representing its
expected behavior.

Instance Diagram:
à represents the initial state of the System Under Test

PKCS#11:	Test	model



PKCS#11:	Class	Diagram



Class Diagram:
à represents the business objects that can be used by the System 
Under Test
à classes own operations that can be called on the system under test 
(control and observation points)

OCL:
à represents the expected behavior of an operation on the System 
Under Test, regarding the system state and the operation parameters

The test model is a System Under Test abstraction, representing its
expected behavior.

Instance Diagram:
à represents the initial state of the System Under Test

PKCS#11:	Test	model



PKCS#11:	Test	model



Class Diagram:
à represents the business objects that can be used by the System 
Under Test
à classes own operations that can be called on the system under test 
(control and observation points)

OCL:
à represents the expected behavior of an operation on the System 
Under Test, regarding the system state and the operation parameters

The test model is a System Under Test abstraction, representing its
expected behavior.

Instance Diagram:
à represents the initial state of the System Under Test

PKCS#11:	Test	model



PKCS#11:	Initial	State



Exercise	Functional	vs	Security	Functional	
Requirements
• Functional	Requirement

• Cryptoki	signs	data	if	the	user	logged,	otherwise	it	responds	with	
an	error	code	USER_NOT_LOGGED_IN

• Security	Functional	Requirement
• When	the	logout	successfully	executes,	any	of	the	application’s	
handles	to	private	objects	become	invalid	(even	if	a	user	is	later	
logged	back	into	the	token,	those	handles	remain	invalid).	In	
addition,	all	private	session	objects	from	sessions	belonging	to	the	
application	are	destroyed.

38 © All rights reserved

How	will	you	test	these	requirements	?
How	you	will	express	them,	using	TP	or	TOCL	?	



Exercise	Solution	(1/3)

• Functional	Requirement
• The	tool	creates	a	test	case	by	choosing	the	shortest	path

39 © All rights reserved



Exercise	Solution	(2/3)

• Security	Functional	Requirement

40 © All rights reserved

for_each literal $KEY from KEY_ID1 or KEY_ID2 or KEY_ID4 or KEY_ID5,
use any_operation any_number_of_times then
use cryptoki.C_OpenSession(_) 

to_activate behavior_with_tags {CKR:OK} then
use cryptoki.C_Login(_) 

to_activate behavior_with_tags {AIM:C_Login/CKU_USER_RW} then
use cryptoki.nominal_generateKey(_,_,CK_TRUE,_) 

to_activate behavior_with_tags {AIM:GENERATE_KEY/OK} then
use cryptoki.C_Finalize(_) then
use any_operation any_number_of_times then
use cryptoki.C_Login(_) 

to_activate behavior_with_tags {AIM:C_Login/CKU_USER_RW} then
use cryptoki.C_SignInit(_,_,$KEY)



Exercise	Solution	(3/3)

• Security	Functional	Requirement

41 © All rights reserved



PKCS#11	in	numbers
PKCS#11 set up metrics

LOC: Lines of OCL constraints



PKCS#11	in	numbers

Fig. Distinct fault detection capabilities 
per coverage requirement

PKCS#11 test generation coverage and 
execution metrics



To	learn more	about	this case	study

44 © All rights reserved

Chapter 11 – PKCS #11 case study

Published in 2016 – Related to the ISTQB® Model-Based Tester Certification



EXPERIENCE	IN	SECURITY	
TESTING	FOR	IOT	SYSTEMS

© All rights reserved



IoT	Existing	Security	Frameworks	

• OWASP	IoT defines	a	framework	that	gathers	information	on	security	issues	
associated	to	the	IoT	development,	deployment	or	technology	assessment.	
However,	it	remains	too	high	level	and	lacks	a	specific	methodology	that	could	be	
used	in	a	systemic	way	- for	instance	in	security	audits.

• GSMA provides	a	set	of	security	guideline	documents	that	target	all	IoT	involved	
entities	(service	providers,	device	manufacturers,	developers,	network	operators	
etc.).	However,	the	GSMA	Security	Framework	only	points	to	currently	available	
solutions,	standards	and	best	practices.

• oneM2M identifies	4	security	domains	(Application,	Intra	Common	Services,	Inter	
Common	Services,	Underlying	Network),	and	3	layers	(Security	Functions,	Security	
Environment	Abstraction,	Secure	Environment).	Selected	as	a	starting	point	for	
ARMOUR	risk	analysis	and	mitigation	methodology.	

46 © All rights reserved



IoT	Security	Framework	[H2020	ARMOUR	Project]

47 © All rights reserved

Security	
Framework	



The	ARMOUR	security	framework	takes	as	entry	the	oneM2M	vulnerabilities,	threats	
and	risk	assessment	methodology,	and	for	each	experiment:
• performed	an	analysis	of	the	risks/vulnerabilities	to	be	considered	during	all	

phases	of	the	experimentation.
• defined a	set	of	countermeasures	in	order	to	address	the	vulnerabilities	and	reduce	

associated	risk.
• described	the	scenarios	and	methodology	that	will	be	the	basis	for	the	experiments

execution.
Vulnerability	classification	and	patterns	in	IoT	systems
• Built	on	existing	frameworks	and	adapt	them	if	necessary,
• A	vulnerability	pattern	intends	to	describe	vulnerabilities,	their	conditions	of	

occurrence	and	impacts.
• CVE	(Common	Vulnerabilities	and	Exposure)	framework:	dictionary	of	publicly	

known	information	security	vulnerabilities	and	exposures

48 © All rights reserved

IoT	Security	Framework	[H2020	ARMOUR	Project]



MBT	Methodology		and	Framework	for	Large-Scale	IoT	
Testing

49 Paris - 9 September

automated 
execution

Security  
MBT models

Local	or	FIRE	
testbeds

Vulnerability
patterns

Standards

automated		MBT			
approach

in-house	approach	

manual	test
conception

Keeping	overall	traceability

Security tests 
TTCN-3

TPLan



MBT	Methodology	
in	5	steps	applied	to	oneM2M

50

Vulnerability patterns identification

MBT model based on ARMOUR 
guidelines

Security test pattern formalization 
using the Smartesting Test Purpose 
Language

MBT test generation based on 
ARMOUR  test strategies using CertifyIt

Publication in TPLan – test description 
and TTCN-3 test scripts&

testbed execution and results

①

②

③

④

⑤



Results	from	the	oneM2M	experience

1. Security	test	pattern	formalization	for	test	generation
2. Definition	of	generic	MBT	models	for	TTCN-3	and	
TPLan	production

3. TTCN-3	publisher
4. TPLan	publisher
5. Detection	of	inconsistencies	in	the	IoT	platform	
under	test	with	the	specification	during	the	oneM2M	
interoperability	event	in	South	Korea.	

51 © All rights reserved



CONCLUSION
Lessons	learnt	from	experience

© All rights reserved



LESSONS	LEARNT

53

Based	on	MBT	pitfalls	and	drawbacks	
• MBT	is	not	just	a	matter	of	tooling

• careful	evaluation	of	the	organisation	is	necessary	for	a	
successful	adoption

• efficient	&	effective	test	strategy	on	long	term	scale	

• MBT	models	are	not	always	correct
• adequate	tools	are	necessary	to	measure	the	quality	of	the	
models,	as	it	leads	to	quality	of	test	cases

• MBT	generates	a	myriad	of	test	cases	
• to	deal	with	it	adequate	formalism	are	necessary	to	benefit	
from	domain	experts	experience

©All rights reserved



LESSONS	LEARNT

54

Benefits from	the	MBT	approach	based	on	our	
experience	
• it	produced	cheaper tests	(average	time	spent	of	
modelling	- 2	days)

• it	produces	better tests	(increased	fault	detection,		
better	model	quality)

• MBT	models	are	clear	
• early test	design	(detection	of	inconsistencies	in	
specification)

©All rights reserved



CONCLUSION	AND	FUTURE	WORK

55

• Model-Based	Security	Testing	position	at	the	
research	and	industry	state	of	the	art

• MBT	tooling	extended	to	security	testing
• Initial	MBT	Framework	for	Security	Testing	of	IoT	
systems	at	different	levels

• OneM2M	experience	à A.	Ahmad	presentation	on	Friday

• Security	is	number	one	challenge	in	the	IoT	domain	
à Looking	forward	for	new	proof	of	concepts	

© All rights reserved



THANK	YOU
QUESTIONS	?	

© All rights reserved

Source	- http://model-based-testing.info


