WHY TESTING AUTOMATION IS THE PERFECT DOMAIN FOR MACHINE LEARNING

Presented by Tamas Cser
AI – Man vs Machine
Machine Learning Opportunities
Current State

72%
AI in testing automation

Human Intelligence
Good for abstract feature identification, bad at scale.

Machine Intelligence
Great at scale, learning anomalies.
Detect Anomalies in Large Dynamic Data

Week 1:
- Results 1..5: Result A, Result B, Result C, Result D, Result E, etc.

Week 2:
- Results 1..5: Result B, Result A, Result C, Result D, Result E, etc.

Week 3:
- Results 1..5: Result A, Result B, Result C, Result D, Result E, etc.

Week 4:
- Results 1..5: Result B, Result C, Result D, Result E, Result F, etc.

Fingerprint the data to determine numeric range for “normal”

Anomaly
SUPERVISED OR UNSUPERVISED?

- Supervised Learning
- Unsupervised Learning

dataaspirant.wordpress.com
ANOMALY DETECTION WITH UNSUPERVISED ML

MODEL SELECTION

• Unsupervised
 • Gaussian Mixture
 • Streaming K-Means
K-Means Clustering
Streaming K-Means – Adaptive Learning

- Partition objects into \(k \) nonempty subsets
- Repeat
 - Compute centroid (i.e., mean point) for each partition
 - Assign each object to the cluster of its nearest centroid
- Until no change
Algorithm (Streaming K-Means)

• Model Training (Normal dataset)
 • K: Number of clusters
 • Normalization of data
 • Engineering (categorical transformation/ dummy coding)
 • Labels/Entropy
• Trainer will yield centroid and threshold
• Validation
 • Anomalies: data points away from threshold from centroid
Algorithm (Streaming K-Means)

- c_t: previous centre of cluster
- n_t: number of points in a cluster
- x_t: cluster centre for current data
- m_t: number of points added in current batch
- Decay factor: ω

\[
c_{t+1} = \frac{c_t n_t \omega + x_t}{n_t \omega + m_t} \quad n_{t+1} = n_t + m_t
\]
Happy Coding

Don’t Forget Machine Learning
THANK YOU

tamas@functionize.com