A FINITE STATE MACHINE-BASED DESCRIPTION IN PERFORMANCE TESTING

Gábor Árpád Németh, Test Solutions and Competence Center

Performance testing

TitanSim

- Used for performance testing of network elements within Ericsson
 - Simulate users, different nodes of the network and their interactions
 - ~100,000 users / 12-core server
 - Scales for massive users (plan: 8 Million)
 - ~1,000 parallel calls / 12-core server
 - Simulate complex behaviors
 - Alternative flows
 - Realistic traffic mix
- Based on TITAN
- Developed in Ericsson R&D Hungary

Alternatives for behavior description

<table>
<thead>
<tr>
<th>Description</th>
<th>Simplicity</th>
<th>Complex behavior</th>
<th>Description can evolve with SUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardwired (Packet generators)</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Call-flow (Traffic playback tools)</td>
<td>✔</td>
<td>✗</td>
<td>~</td>
</tr>
<tr>
<td>Program code</td>
<td>×</td>
<td>✔</td>
<td>~</td>
</tr>
<tr>
<td>EFSMs (Extended Finite State Machines)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

EFSM-like description

- input → runs an action + change its states
- using building blocks → reusability

Simplicity

Complex behavior

Description can evolve with SUT

SUT (System Under Test)

Telecommunication network

Load Generator

traffic load

 Alternatives for behavior description

<table>
<thead>
<tr>
<th>Description</th>
<th>Simplicity</th>
<th>Complex behavior</th>
<th>Description can evolve with SUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardwired (Packet generators)</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Call-flow (Traffic playback tools)</td>
<td>✔</td>
<td>✗</td>
<td>~</td>
</tr>
<tr>
<td>Program code</td>
<td>×</td>
<td>✔</td>
<td>~</td>
</tr>
<tr>
<td>EFSMs (Extended Finite State Machines)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

EFSM-like description

- input: event
- action: test step
- state: status of simulator

TitanSim

- Used for performance testing of network elements within Ericsson
 - Simulate users, different nodes of the network and their interactions
 - ~100,000 users / 12-core server
 - Scales for massive users (plan: 8 Million)
 - ~1,000 parallel calls / 12-core server
 - Simulate complex behaviors
 - Alternative flows
 - Realistic traffic mix
- Based on TITAN
- Developed in Ericsson R&D Hungary