USING FAULTS FOR EFFICIENT MBT FOR A COMPLEX RAILWAY APPLICATION

Presented by Rupert Schlick
Railway Interlocking - The Application

• Application Purpose:
 • Ensure safe train movement
 • Prevent collisions and derailing of rolling stock

• Experimental Evaluation
 • used a functional subset of interlocking logic following Austrian railway operation rules
 • THALES product LockTrac 6131 Elektra, approx. 250 installations, 4 countries
Railway Interlocking - Process Challenges for Testing

- Complex Application Domain
 - 30 years in service
 - country specific requirement variants
 - multiple HW and OS platforms

- Highly regulated domain
 - CENELEC standards, e.g EN50128 (software safety)
 - require controllable, documented test and verification process
 - traceability, certification of SW increments
Railway Interlocking - Technical Challenges for Testing

Example Rule Requirement:
IL:RULE:121: A switch shall reject any kind of moving command (both if it is a manual command and if it is an automatically generated command), if the switch holds a lock or any interlock or an interlock request.

Complexity
- 71 rule requirements in simplified eval. example
- example test station has:
 - 34 points, 56 track relais, 22 signals, 145 train routes
Principle of Model Based Testing (MBT)

- Test Model:
 - sequences/scenarios
 - state machines
 - formal requirements
 - usage probabilities ...

- Test Goal:
 - target state (condition)
 - number of tests (random walks)
 - coverage
 - requirement
 - model structure
 - user inputs ..

- Test oracle:
 - no crash, no deadlock
 - correct behaviour (subset)
 - invariants...

User Conference on Advanced Automated Testing
Principle of fault based MBT

- behaviour model
- mutant: model with a small, syntactically correct change

- used for both:
 - test quality analysis
 - as a test goal (fault coverage)
Comparison with other coverage driven approaches

• structural coverage alone in state machines (e.g. transitions) is not enough -> decision, data flow
• data flow coverage not easily done in concurrent models with instances
• observability not inherent in classic coverage
• safety standards request certain coverage criteria for code
Combining Strategies

Combine cheap and expensive approaches

Results in efficient test-suite:
- Full coverage
- Optimized test effort
- Integration of legacy-tests
The Test Case Generator: MoMuT

- TCG engine
 - Input from different modelling tools

- Papyrus UML language front-end used in evaluation
 - Generation from UML state machines

- Other modelling languages planned:
 - DSLs from industrial users
 - Timed Automata
 - Event-B
Behaviour Model

- 32 classes (4 environment, 18 field element, 10 trainroute logic)
- 18 active classes (state machines)
Example Stations + Model Size

<table>
<thead>
<tr>
<th>Station</th>
<th>MMS</th>
<th>LBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterisation</td>
<td>A small meeting station</td>
<td>Layout used for train route tests</td>
</tr>
<tr>
<td># track relays</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td># signals</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td># points</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td># train routes</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td># instances</td>
<td>125</td>
<td>2847</td>
</tr>
<tr>
<td># controllable inputs</td>
<td>172</td>
<td>1652</td>
</tr>
<tr>
<td>State size / kB</td>
<td>22,3</td>
<td>> 184,9</td>
</tr>
</tbody>
</table>
Evaluation of generated tests

- UML mutation coverage of:
 - original tests from production use
 - random tests generated from model

- evaluation of test coverage
- option to prioritize tests
- derive traces from test to requirement
Performance/Applicability

Generates tests with overall 450 steps for MMS in 23 minutes, covering 680 of 2044 mutants

- Abstract tests including oracle and coverage information
- Not cleaned up for unreachable mutants

Use of enumerative exploration

- Just-In-Time Compilation based on LLVM 3.6
- Partial Order Reduction
- Partial Orders Encoded in Test Cases
- Exploring mutants only for needed steps (<5 steps for 99 %)
- Search based exploration driven by mutants (LBT + 10 % cov.)
Conclusion –
How are the challenges addressed?

• reduced effort
 • automated test development
 • efficient tests -> affordable test run time
 • less maintenance effort

• sufficient test quality
 • better suited coverage criterion (for generation)

• certification of increments
 • only needed changes to test suite (improvement support)

• complexity can be handled
 • automated generation of tests in reasonable time
Acknowledgements

• Partners
 • Thales Austria GmbH

• Graz University of Technology Institute for Software Technology

• Funding Agencies:

• Projects:
Contacts

www.MoMuT.org

Rupert Schlick,
Willibald Krenn
Department Digital Safety and Security
Business Unit Safe and Autonomous Systems
AIT Austrian Institute of Technology GmbH
Donau-City-Straße 1 | 1220 Vienna | Austria
http://www.ait.ac.at | F +43(0) 50550-4150

rupert.schlick@ait.ac.at | T +43(0) 50550-4124
willibald.krenn@ait.ac.at | T +43(0) 50550-4109

Werner Schütz
Head Methods and Tools
Thales Austria GmbH
Handelskai 92 | 1200 Vienna | Austria
http://www.thalesgroup.com/austria
werner.schuetz@thalesgroup.com
T +43(0)1-27711-3115