Raspberry Pi Single-Board Computers for Testing: How Berry Traces have Changed our Lives

Dirk Lüdtke, Andreas Lauterbach, Fabian Staudinger
Background

- **Product**
 - Software for in-vehicle Infotainment Systems
 - navigation, audio, video, online services, speech dialog system
 - Premium systems (Asia market)

- **Tasks**
 - Software integration and smoke testing
 - Recording of traces (baseline for later analysis)

- **Sponsor**
 - AW Technical Center Europe (Munich)
 - Subsidiary of Aisin AW (Japanese automotive supplier)
Introduction

- Quantity of releases
 - 4 regions, 5 car manufacturers, different models, overlapping SOPs
 - up to 45 Software releases per week

- Automation of software build and assembly
 - manual integration 8 hours -> 2 hours (human effort)
 - difficult to reduce further

- Automation of testing
 - manual testing takes about 1 hour
 - can be reduced by factor 4
 - functionality can be extended (more traces, more self tests)
Manual testing

- Display
- Key Panel
- Ignition
- Main Unit (SD-card slots)
- Power Supply

Demonstrator

Serial Connections

Telnet Connection (optional)
Approach A

- **Advantages**
 - Already in use
 - Full range of features (frame-grabbing, key-panel-simulation)

- **Disadvantages**
 - PXI-Hardware: > 20,000 EUR
 - Still requires adaptation effort
 - Outage risk
Approach B

- **Advantages**
 - Hardware: ~ 350 EUR per demonstrator
 - Distributed system
 - Scalability

- **Disadvantages**
 - Development: ~ 5,000 EUR
 - Limited features
Implementation 1

- **Python**
 - pyserial
 - pysvn
 - blends into existing system (mostly in Python)
 - in-house logging modules
 - in-house SVN modules

- **Configuration**
 - Stores settings for various demonstrators
 - Serial-USB adapters
 - Preferences of the developers
 - SVN structure
Implementation 2

- Classes for logical/physical structures
 - Ignition
 - Power Supply
 - Main Unit
 - SVN

- Main test sequence
 - Connection tests
 - On/Off cycle (Main Unit)
 - Traces / several logs / SVN / …

- Multithreaded tracing and logging
Feature summary

- Low power consumption
 - ~ 30 kWh / year

- Distributed system
 - No single point of failure

- Allows permanent logging
 - E.g. during updates, non-testing activities

- Link to SVN
 - Get SW update from SVN and install update
 - Do test (semi-manually)
 - Put test results and traces to SVN
Outlook

- **Additional capabilities**
 - CAN/LIN/UART
 - Simulate key panel / touch pad inputs
 - speed signals
 - Image recognition
 - LVDS screen grabber
 - internal screenshots
 - Audio I/O

- **New applications**
 - automated updates (e.g. new map data)
 - software development
 - main unit configuration utilities