
Compositional Risk Assessment Combined with Automated Security Testing

The RACOMAT Method and Tool Johannes Viehmann 2014

Overview

RACOMAT

Risk Assessment COMbined with Automated Testing

Table of content

• Introduction

• Problems and challenges

• State of the art

• The RACOMAT method

• The RACOMAT tool

• Case studies

• Conclusion and future work

Introduction

Importance of Risk Management for ICT-Systems

Basic observations

• Heterogeneous cross linked ICT-Systems of growing
complexity are a key factor in modern industries and
societies

• Security is crucial in various market sectors, including
IT, health, aviation and aerospace.

Why Risk Management is required

• In the real world, perfect security often cannot be
achieved

– There are residual risks for any complex ICT-
System

• Risk assessment und risk treatment can help to create
trust by:

– Communicating residual risks

– Help to implement safeguards and treatments
for to high risks in order to reduce the risks

Problems and Challenges
Risk Assessment and Security Testing

Risk assessment might be difficult and expensive

– Hard for large scale systems

– Is highly dependent on the skills and

estimates of analysts

→ Make risk analysis more objective with testing

Security testing might be difficult and expensive, too

– Testing for unwanted behavior – there is no

specification what to expect

– Even highly insecure system can produce

lots of correct test verdicts if the “wrong” test

cases have been created and executed

– Manual testing is error prone and infeasible

for large scale systems

→ Automate risk assessment and security testing

State of the Art
Risk Assessment, RBST, TBSR

Methods for Risk Assessment

• FMEA/FMECA, FTA, ETA, CORAS …

• Compositional Risk Analysis

• Standard: ISO 31000

Combination of risk assessment und security testing

• Test-Based Risk Assessment (TBRA)

– Improve risk assessment with results of

security tests

• Risk-Based Security Testing (RBST)

– Optimize security testing with results of risk

assessment

• Combination of TBRA and RBST

– No specific method established

→ The RACOMAT Method should close the gap

The RACOMAT Method
Iterative Process

5. Feedback

What do the test results mean for the overall risk picture?

5. Feedback

What do the test results mean for the overall risk picture?

4. Execution

How to stimulate and observe? Where to stimulate and observe?

4. Execution

How to stimulate and observe? Where to stimulate and observe?

The RACOMAT Method
Levels of Interaction Between Risk Assessment and Security Testing

3. Generation

Which test cases should be created?

3. Generation

Which test cases should be created?

2. Prioritization

Spend how much effort for which tests?

2. Prioritization

Spend how much effort for which tests?

1. Identification

What should be tested?

1. Identification

What should be tested?

The RACOMAT Method
Reusability and Automatization

• Component based, low level risk assessment

– Reusable risk assessment artifacts

– Compositional risk analysis

– Connection with system components

• Security testing is a part of the RACOMAT Risk

analysis

– RBST, TBRA and automatization with the

help of Security Test Pattern

Security test pattern contain:

• Strategies, models und code snippets for

test case generation and test execution

• Generic links between test pattern, risk

analysis artifacts and system components

• Information about testability and test effort

• Metrics for test result aggregation and

feedback to the risk picture

The RACOMAT Method
Security Test Pattern

Field Description Format

ID Unique identifier Number

Name Meaningful identifier Text

Description Information for the user Informal XHTML

Relations E.g. to risk artefacts {Catalog}, ID, semantics

The RACOMAT Method
Security Test Pattern

Field Description Format

ID Unique identifier Number

Name Meaningful identifier Text

Description Information for the user Informal XHTML

Relations E.g. to risk artefacts {Catalog}, ID, semantics

Generators Create test data
Type, (code snippet / tool /
model / informal XHTML)

Executers
Test and observe for faults
or unwanted incidents

Type, (code snippet / tool /
model / informal XHTML)

Metrics Calculate the risk Type, (code, informal XHTML)

The RACOMAT Method
Security Test Pattern

Field Description Format

ID Unique identifier Number

Name Meaningful identifier Text

Description Information for the user Informal XHTML

Relations E.g. to risk artefacts {Catalog}, ID, semantics

Generators Create test data
Type, (code snippet / tool /
model / informal XHTML)

Executers
Test and observe for faults
or unwanted incidents

Type, (code snippet / tool /
model / informal XHTML)

Metrics Calculate the risk Type, (code, informal XHTML)

Evaluations
Assess generator, executer
and metric combinations

Enumerations for effort and
effectiveness

Feedback User experiences Rating, informal comments

The RACOMAT Tool
Features and Workflow 1/2

• System analysis and risk assessment

– Automatically creates interface models

for programs, APIs, components, Web-

Pages or Web-Services

– Generates semi automatically initial fault

trees or CORAS risk graphs

• Uses risk catalogues (Mitre CWE /

CAPEC, BSI IT-Grundschutz …)

– Edit and compose per Drag and Drop

– Calculates likelihoods for dependent

incidents automatically

• Security Test Pattern instantiation

– Suggests associations with identified

threat scenarios and system

components

– Calculates, how much test effort should

be spend

The RACOMAT Tool
Features and Workflow 2/2

• Execution of tests

– Once a test pattern is instantiated,

generating, executing and evaluating

tests woks at least semi automatically

• Often no manual work is required at all,

e. g. for overflows or (SQL-) Injections

• Updates the risk picture based upon the test

results semi automatically

– Makes suggestions using the metrics of

the security test pattern

• More precise likelihood values

• Allows to add unexpected observations

as new faults or unwanted incidents by

dragging them to the risk graph

The RACOMAT Tool
Security Test Pattern Library STPL

Security Test Pattern Library STPL is a catalogue of security test pattern for the most common

threat scenarios

• If there is no fitting test patterns, new test pattern can be created and edited using the

RACOMAT Tool

• User can contribute feedback and they can suggest extensions for the open STPL

– Quality management with ratings / comments of the users

The RACOMAT Tool – Demo

Case Studies

First experiences from praxis

• RACOMAT method and tool are tested in two case-studies for modular large scale systems

– S-Network (Fraunhofer, H-C3 TU Berlin, http://surn.net)

– Command Central (Software AG, EU-FP7 funded project RASEN,
http://www.rasenproject.eu)

Positive experiences

• The assistants and the libraries of predefined artifacts help to avoid that the analysts miss
important aspects

– Negative risk assessment: remove not relevant threats instead of looking for the relevant
threats

• Reusing artifacts helps to reduce the need to reinvent the wheel each and every time – hence,
it reduces the potential for analysts and testers to make errors

Problems

• There are currently only a few useable security test pattern

– It is difficult to make sound estimates for the test quality, test effort and especially for
generic test evaluation

http://surn.net/
http://www.rasenproject.eu/

Conclusion and Future Work

• RACOMAT method and tool already combine risk assessment with security tests tightly

– Other analysis methods: Simulation, monitoring, verification, review …

– Basic threat simulation (Monte Carlo simulation) already implemented into RACOMAT

• Assistance for analysis of external cloud services (outsourcing)

• Vision: Open Risk Assessment – Community Driven Risk Analysis

Questions, Remarks?

Thanks a lot for the attention!

Johannes Viehmann 2014

Contact

Fraunhofer Institute for Open

Communication Systems FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

www.fokus.fraunhofer.de

Johannes Viehmann

johannes.viehmann@fokus.fraunhofer.de

Dr. Tom Ritter

Head of competence center SQC

tom.ritter@fokus.fraunhofer.de

Friedrich Schön

Head of competence center SQC

friedrich.schoen@fokus.fraunhofer.de

System Quality Center SQC

http://s.fhg.de/sqc

http://www.fokus.fraunhofer.de/
mailto:johannes.viehmann@fokus.fraunhofer.de
mailto:tom.ritter@fokus.fraunhofer.de
mailto:friedrich.schoen@fokus.fraunhofer.de
http://s.fhg.de/sqc

