
Mining Oracles 
for Fully Automated Test Generation

Andreas Zeller
Saarland University, Saarbrücken, Germany

® Visual 
Computing 
Institute

Center for Information Security, Privacy and
Accountability

Testing

Software is manifold

Software is manifold

Software is manifold

Software is manifold

Software is manifold

Software is manifold

Testing

Configurations

Testing

Configurations

Dijkstra’s Curse

Configurations

Testing can only find the
presence of errors, 
 not their absence

Formal Verification

Configurations

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Formal Verification

Configurations

Ab
st

ra
ct

io
n

The Best of two Worlds
Ab

st
ra

ct
io

n

Configurations

Generating Tests
Ab

st
ra

ct
io

n

Configurations

Infinite Monkey Theorem

Evolutionary Algorithms

Create
population

Create
mutations

Recombine
Rank

Select

“fdsakfh+ew%3gfhdi%4f” “fwe8^ru786234jä”

“fdsakfh+br%3gfhdi%4f”

“fdsakfh+ew%4gfhdi%4f”

“fwe8^ru&26234jä”

“xb3#ru786234jä”

Mutation

Recombine

“fdsakfh+ew%4gfhdi%4f” “xb3#ru786234jä”

Create population

“fdsakfh+ew%3gfhdi%4f” “fwe8^ru786234jä”

“fdsakfh+br%3gfhdi%4f”

“fdsakfh+ew%4gfhdi%4f”

“fwe8^ru&26234jä”

“xb3#ru786234jä”

Mutation

Crossover

“fdsakfh+ew%4gfhdi%4f” “xb3#ru786234jä”

“xb3#ru7%4gfhdi%4f”

Create population

if (angle = 47 ∧ power = 532) { … }

“fdsakfh+ew%4gfhdi%4f”

“xb3#ru786234jä”

“xb3#ru7%4gfhdi%4f”

angle = 31

angle = 48

angle = 65

Selection and Ranking

“xb3#ru78^^&1jä”

if (angle = 47 ∧ power = 532) { … }

“xb4%ru786234jä”“xb3#ru786234jä”

angle = 51

angle = 48

angle = 47

Selection and Ranking

EXSYST
Florian Groß, Andreas Zeller

Test Coverage

0 %

25 %

50 %

75 %

100 %

Addressbook Calculator TerpPresent TerpSpreadSheet TerpWord

Randoop Evosuite GUItar Exsyst
Unit Test Generators GUI Test Generators

but can these
ever be invoked

from here?

testing
may detect 
errors here…

test generation 
at the system level

anything that
happens here 
is real

test generation 
at the system level

The Oracle

The Oracle

“Without specification, 
there are no bugs— 
only surprises”

Brian Kernighan

Specifications

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Specifications

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test
fully 

automated 
debugging

fully 
automated 

testing

widely 
automated 
verification

Formal Methods

 © Myla Fox Productions

The Oracle

<Crash>

Specifying Correctness

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Normality

Mining Normality

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

WEBMATE
Martin Burger, Valentin Dallmeier, Andreas Zeller

Normality: Platforms

Abnormal Behavior

Presence of interactive elements

Presence of non-interactive items

Dimension Position Pixels

webmate.io

Normality: Time

Time

 Yesterday Today

webmate.io

Public Beta November 2014

Normality: Apps

CHABADA

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. Used APIs 5. Outliers

Weather
 + Travel

London Restaurants
looking for a restaurant, a bar, a pub or just to have fun in
london? search no more! this application has all the
information you need:
• you can search for every type of food you want: french,
british, chinese, indian etc.
• you can use it if you are in a car, on a bicycle or walking
• you can view all objectives on the map
• you can search objectives
• you can view objectives near you
• you can view directions (visual route, distance and
duration)
• you can use it with street view
• you can use it with navigation
keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

Stemming
looking for a restaurant, a bar, a pub or just to have fun in
london? search no more! this application has all the
information you need:
• you can search for everi type of food you want: french,
british, chinese, indian etc.
• you can use it if you are in a car, on a bicycle or walking
• you can view all objectives on the map
• you can search objectives
• you can view objectives near you
• you can view directions (visual route, distance and
duration)
• you can use it with street view
• you can use it with navigation
keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

look restaur bar pub just fun
london search

search

applic
inform need

can

can
can
can
can
can

can
can

search

search

everi type food

food

want french
british chines indian etc

us car bicycl walk
view object map

object
objectview

view
near

direct visual rout
durat

us
us

street view
navig

keyword london restaur bar pub
breakfast lunch dinner meal eat supper street view
navig

distanc

Stemming

look restaur bar pub just funlondon search applic

inform needcan search everi type food want french

british chines indian etc car bicycl walk

can canus view object map visual rout

searchcan cansearch object view distanc

can objectview neardirectdurat

can canus usstreet view navig

foodkeyword london restaur bar pub view

breakfast lunch dinner meal eat supper street navig

London Restaurant Topics
look restaur bar pub just funlondon search applic

inform needcan search everi type food want french

british chines indian etc car bicycl walk

can canus view object map visual rout

searchcan cansearch object view distanc

can objectview neardirectdurat

can canus usstreet view navig

foodkeyword london restaur bar pub view

breakfast lunch dinner meal eat supper street navig

“navigation and travel” (59.8%) 
“food and recipes” (19.9%) 
“travel” (14.0%)

Clusters
Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

Clusters

Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

Outlier Analysis
• For each app, determine the APIs used

• In each cluster, identify outliers through
one-class support vector machine (OC-SVM)

London RestaurantsLondon Restaurants
Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

→ An Outlier in the “Travel” Cluster

CHABADA

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. Used APIs 5. Outliers

Weather
 + Travel

Malware recognition rate >80%

Information Flow
• Which sensitive APIs does the device ID flow to?

Network + SMS
1 %

Intent
38 %

Log
60 %

Network + SMS
37 %

Intent
6 %

Log
57 %

Benign Apps Malicious Apps

App1

✔ LOG1ID4

App2

✔

App

?
ID4

ID4? SMS2

... ...
✔ LOG2ID2

App1

App3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

MUDFLOW

Malware recognition rate >86%

DROIDMATE

Normality: Apps

Normality: Apps

connect to 
adserver.com

connect to 
exploit.com

http://adserver.com
http://exploit.com

Mining Normality

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Úlfar Erlingsson

68

JP Galeotti

A Gorla

J Rößler

K Becker

I Tavecchia

K Streit

K Herzig

V Dallmeier

C Hammacher

M Höschele

S Just

A Rau

E May

B Pohl

M Burger

F Gross

A Tarasevich

M Mirold

K Jamrozik

A Zeller

G Reibold

Mining Normality

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Evolutionary Algorithms

Create
population

Create
mutations

Recombine
Rank

Select

webmate.io

Public Beta November 2014

CHABADA

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. Used APIs 5. Outliers

Weather
 + Travel

Malware recognition rate >80%

http://www.st.cs.uni-saarland.de/

http://www.st.cs.uni-saarland.de

