# ALL4TEC

## Using Model-Based Testing during the life cycle of your product

Alexis DESPEYROUX & René-Christian TUYISHIME
Support And Pre-Sales



ALL4TEC Copyright 2013 www.all4tec.net

- **□**Introduction
  - ■Tutorial
  - **□** Conclusion

### **Test in V cycle**





#### **Test challenges**

Error correction cost





- IBM Systems Sciences Institute
- Crosstalk, the Journal of Defense Software Engineering

Where errors are introduced

#### **Some Testing issues**



- Test plans are written very later
  - **⇒** Often after the system implementation
  - **⇒** Errors detected later -> expensive correction
- Maintain test cases and test scripts
- Information on the requirements coverage rate
- Maintain resources
- Lack of communications between designers, developers and testers
  - **⇒** Lack of processes
  - **⇒** Projects are abandoned
- ☐ Etc.

## **Model-Driven Engineering**



ALL4TEC

### **Design Model**

ALL4TEC

- Embedded system development
- Abstract representation of the system based on specifications
  - **⇒** Verification
  - **⇒** Automatic code generation
  - ⇒ Executable in the target environment













## **Model-Driven Engineering**





### **Usage Model**



- Behavior of the SUT (System Under Test)
  - Stimulations or actions
  - **⇒** Verifications
- Formal languages are used
  - **⇒** UML, Markov chains, states charts...
- Test cases generation
  - **⇒** Test strategies
- ☐ The usage model construction has to begin as soon as we have a big part of requirements
  - **⇒** Detect and remove ambiguities early

## **Model-Driven Engineering**





#### **Test Strategies**



## Most probable approach



FREQUENCY FOCUS

#### Risk based Approach User Oriented - Limit



CRITICALITY, COMPLEXITY
UPDATE FOCUS

## Arcs coverage approach



REQUIREMENTS COVERAGE

## Usage approach Random



OPERATIONAL COVERAGE



- Manual test cases
  - **⇒** Test suite
  - **⇒** Test generation report
  - **⇒** Requirement coverage reports
- **☐** Translation in test scripts
  - **⇒** According to test automation tool
- ☐ Executed in a Test environment





- Introduction
  - **□**Tutorial
  - **□** Conclusion

#### **Used tools**

ALL4TEC

- MaTeLo (Markov Test Logic)
  - **⇒** Model-Based Testing approach
  - **⇒** Markov chains logic



### MaTeLo Usage Models





ALL4TEC Copyright 2013 www.all4tec.net

### **Model Transition = Test Step**





### MaTeLo Ecosystem





www.all4tec.net



- □ NI TestStand TestStand
  - **⇒** Test sequencer
    - Execute test sequences generated by MaTeLo





#### **☐** Matlab Simulink for design models



#### Engine Timing Model with Closed-Loop Control



Copyright 1990-2009 The MathWorks, Inc.

#### **SUT: Cruise Control Simulation**





### ALL4TEC

#### ■ NI VeriStand

⇒ Real time environment



## **Testing methodology**





#### **SUT** requirements



#### **Req\_01:**

A push on the ON button activates the cruise control and the led is switched on

#### Req\_02:

A push on the OFF button deactivates the cruise control and the led is switched off

#### Req\_03:

Pressing the brake pedal deactivates the cruise control and the led is switched off

#### Req\_04:

- When the cruise control is activated:
- A push on the button SET imposes the current speed as the target speed
- One push on the button "Inc" increases the cruise control target speed by 1km
- One push on the button "Dec" decreases the cruise control target speed by 1 km
- The increase or decrease of 1km must last at maximum 50 ms

#### Req\_05:

■ The cruise control is effective between [30,150] Km/h

## Live DEMO

- Introduction
  - ■Tutorial
  - **□**Conclusion

#### **Conclusion**

ALL4TEC

- Quantified and optimized requirements coverage
  - **⇒** Model-Based Testing tools give requirements coverage indicators
- **□** Consolidation of functional requirements
  - **⇒** Ambiguities in specifications are removed early
- **☐** Pertinent test cases (usage profiles, risks, ...)
  - **⇒** Possibility to define usage profiles
  - **⇒** Risks are taken into account in the generation strategies
- **□** Easy test cases maintenance
  - ⇒ It is more easier to maintain an usage model than manual test cases
- **□** Easy test cases automation
  - **⇒** Test effort lowered

#### **ALL4TEC**

ALL4TEC

ALL4TEC Laval (HQ) FRANCE

ALL4TEC Paris FRANCE

ALL4TEC Munich GERMANY

ALL4TEC Stockholm SWEDEN

Sales sales@all4tec.net

Support http://all4tec-support.net

Marketing marketing@all4tec.net

To discover our company and download a **full trial MaTeLo evaluation (30days)**, visit our web site: **www.all4tec.net** 

ALL4TEC Copyright 2013 www.all4tec.net