
1

Use of Domain-Specific Modeling
with Model-Based Testing

Juha-Pekka Tolvanen, PhD, MetaCase

Stephan Schulz, PhD, Conformiq

2

Contents

• Introduction to DSLs and MBT

• DSL + MBT = ?

• Case 1: Web application (IT)

• Case 2: Military radio (embedded)

• Results

• How to get started

• Summary, Q&A

3

Some relevant language classifications
to start with

• General-Purpose / Domain-Specific
– Narrow area of interest

– Can be inside one company and its products only

4

Narrow area of interest

• Example: Calendar application

@Test

 public void addTask() {

 CalendarUser user = new CalendarUser();

 CalendarApplication calendar = user.getCalendar();

 Calendar time = Calendar.getInstance();

 time.set(2012, Calendar.FEBRUARY, 2);

 CalendarTask calendarTask =

 calendar.addTask(time.getTime(),"My Little Task");

 assertEquals("Number of tasks", 1,

 calendar.getTasks().size());

 assertEquals("Task description”, "My Little Task",

 calendarTask.getDescription());

 assertEquals("Task time”, time.getTime(),

 calendarTask.getWhen());
 }

Generic Specific

http://openclipart.org/people/BigRedSmile/BigRedSmile_Rule.svg

5

Some relevant language classifications
to start with

• General-Purpose / Domain-Specific
– Narrow area of interest

– Can be inside one company and its products only

• Problem Domain / Solution Domain
– Higher abstraction as it leads to improved productivity

6

Problem domain

• Language concepts = domain concepts

• In calendar domain:
– Meeting

– Task

– Person

– Organizer

– Participant

– etc.

• Raise the level of abstraction

7

Some relevant language classifications
to start with

• General-Purpose / Domain-Specific
– Narrow area of interest

– Can be inside one company and its products only

• Problem Domain / Solution Domain
– Higher abstraction as it leads to improved productivity

• Graphical / Text / Matrix / Table etc.
– Always apply style close to the domain’s natural

representation

– In this talk we apply graphical modeling languages
• Humans are good at spotting visual patterns

• Easier to read, understand and communicate with

• Expressing conditions, parallelism and structures

• Reusability

8

Graphical modeling languages

• Language concepts = domain concepts:
– Person

– Organizer

– Participant

– Task
• Add, remove,…

– Meeting
• Add, remove,…

– etc.

• Domain rules in the language
– Only organizer can cancel the meeting, etc.

9

Some relevant language classifications
to start with

• General-Purpose / Domain-Specific
– Narrow area of interest

– Can be inside one company and its products only

• Problem Domain / Solution Domain
– Higher abstraction as it leads to improved productivity

• Graphical / Text / Matrix / Table etc.
– Always apply style close to the domain’s natural

representation

• Static structures / Behavior

10

Domain-Specific Modeling Languages

• Applied in particular for automating repetitive
development efforts:
– Product line development

– Platform-based application development

– Product configuration and deployment

• Higher abstraction and automation (code
generation) leads to significant results:
– 5-10x improvements in productivity*

– Better quality as errors can be detected or avoided
already in the design phase*

* See references on EADS, NSN, Nokia, Panasonic, Polar Elektro, USAF

11

Steps for Defining Domain-Specifc
Modeling Languages and Generators

Concepts Symbols

Generators Rules
1 2 3 4

Specify language
concepts & their
properties

Create a
notation

Define rules for
the concepts

Define
generators

12

About Model-Based Testing (MBT)

(System)

Model

Environment

Real

System

Goals
 …
 …
 …

Synthesize

• Umbrella term for using models in a testing context

• One approach is to use MBT for automating test
design
– Here model reflects operation of the system to be tested

– MBT complements test execution

– Recognized by worldwide industrial standards (ETSI)

13

Manual

Scripts-Based
Capture/Replay

Frameworks

Keyword Driven

Evolution of Software Testing

Test Models

ATD

MBT

ATD+

ATD+ is ATD driven by a

domain specific language

Automated Test Design (ATD)

uses models of system

operation as its input and is

the most advanced Model

Based Testing (MBT)

technology

14

Test Approach Comparison Heat Map

Test Approach Te
st

C
o

ve
ra

ge

Ea
rl

y
P

ro
b

le
m

D

is
co

ve
ry

Fu
n

ct
io

n
al

C

o
m

p
le

xi
ty

Te
st

 A
rt

if
ac

t
R

e
u

se

R
e

q
u

ir
e

d

Sk
ill

 S
e

t

Te
st

 P
ro

ce
ss

O

p
ti

m
iz

at
io

n

P
ro

d
u

ct
iv

it
y

G
ai

n
 In

it
ia

l

P
ro

d
u

ct
iv

it
y

G

ai
n

 It
e

ra
ti

o
n

Manual Test 2 2 2 0 2 1 1 1

Test Scripts 5 5 6 6 7 4 4 3

Test Modeling 7 5 5 4 5 6 7 6

Automated Test Design 10 8 8 8 8 8 6 8

DSL Driven ATD 10 8 8 9 4 8 8 9

http://www-01.ibm.com/software/rational

15

ATD+: DSL driven MBT

• Draws from all benefits of conventional ATD
– Automated test design and traceability

– Integration into test automation ecosystem

– 5x improvements in productivity

• Enables testers to model system operation
– No longer programming skills required

– Less training and faster ramp up

• Allows other stakeholders to review models
– “Shift (really) left” … engage your customer!

~5x (DSL) combined with ~5x (ATD) = ???

16

Automated Test Design Workflow

Model

System Operation

Direct & Review

Test Design

Generate Test Scripts

& Documentation

Domain Specific

Modeling Tool

Model Based

Test Design Tool

Test Execution

Tool(s)

17

Why are DSLs so Important in Testing?

Testing is about achieving a common understanding

18

Case 1: Conformiq Creator

• A DSL developed for
– Modeling system operation

in later testing phases such as
system & end-to-end testing

– BFSI, Enterprise IT, web
services, web applications,
etc.

– Testers and Subject Matter
Experts

• Encodes best practice
– Provides set of pre-defined

modeling building blocks

19

ID

Modeling with Creator
• Activity Diagrams

– Specify system operation using
standard activity diagram symbols

– Refine activities and decision
based on action keywords and
data objects

• Keyword Repository
– Action keywords and data objects

generated from interface objects

• Interface Diagrams
– Define external SUT interfaces

based on domain specific pre-
defined interface objects

Keyword Repository
S

R _
+ ?

AD
 Display
 Fill
 Query
 Req

?

R

?

N

Y

+
_

http://www-01.ibm.com/software/rational

20

About Interface Diagrams

21

About Activity Diagrams

Fulfill a dual purpose:

• Specifies “what” is to be tested, i.e., relevant system
operation in terms of workflows

– Using activity, decision, event, merge nodes and control
flow

• Specifies “how” to test based on action keywords
and data objects generated from interface diagrams

– Actions refine the activity description

– (Graphical) conditions refine decisions

– Data flows

22

Activity Diagram Example

Set URL

Form variable
data object

Store form data
produced by click
action in variable

Compare all form data
against multiple values

Click button action with
blocking pre-condition ()

Requirement action

Refer to
subdiagram

Display screen verification action

Conditional () action

23

Generic vs Domain Specific

Generic Concept Domain Specific Concept

Class Message, Screen, Button

integer, boolean,
String

Number, Checkbox,
Dropdown Box

Receive on a port Click a button, fill a form,
Receive a message

Send from a port Display a screen,
Send a message

Compare each field of a
variable to basic value

Compare entire message or
form variable against value

Note: Domain = Application Domain and Testing Domain!

24

Idea: Simplify, Reduce & Reuse

• Symbols have look & feel closer to application domain

• Abstraction and layering of model information

– Not all model information is on the canvas

• Object driven specification enables reuse

• Less modeling errors by using “specification by selection”

25

Modeling for Testing

• Work with complete data object values

• Enable use wildcards

• Visual indication of pre-conditions

26

1st Industrial Feedback on Creator

• Doubled productivity over conventional UML/
Java based automated test design solution

• Training need reduced from 4 weeks to 4 days

• Subject Matter Experts (SMEs) and manual
testers are able to model for testing

• Ecosystem from conventional automated test
design approach could be reused

27

Case 2: Elektrobit Military radio
(Puolitaival et al., 2011)

28

EB Tough VoIP Features

• Tough VoIP is a wired
phone that is using
UDP/IP network for
connection

• Manufacturer: Elektrobit

• Main features:
– Easy configuration

– Point-to-Point call

– All call

– War-proof device

– As simple as possible

29

Testing problem

ETC...

30

EB Test Tool Platform +
OpenTTCN tester

Two language solution

Model Model

MBT

TTCN-3 TTCN-3

Modeling
one test case

Modeling a
test logic

Model-Based
Testing
generates
multiple test
cases

Generating
one test case

Executing the
test case

Executing
test cases

31

Language development
EB’s test
expert,
coder

Language
developer Specs + code sample

Language, example models

Modeling,
Trying,
Coding

Model
development

Model
development

Change request

Language

Testing

N times CR + update...

Language developing

32

Model example 1:
Modeling test cases

33

Model example 2:
Modeling for test generation

34

0 5 10 15 20

DSM

Coding

Days

Creating DSM solution

Test suite 1

Test suite 2

Test suite 3

Test suite 4

Test suite 5

Experiences

• About 10 times faster with modeling
• Set-up time estimation:

– 2 weeks for the first version
– 1 more week for making it better

• Other benefits:
– Visualization makes it easy to understand
– Easy test configuration
– Test coverage dramatically increase with MBT
– Mass testing with MBT models
– No special skills needed for creating test cases

35

Results of combining DSLs + MBT

The case studies show:
• Easier adoption

– Better acceptance, short ramp up

• Significantly faster model development
– Higher abstraction leads to improved productivity
– Automation of model creation
– Immediate feedback & guidance during model creation

• Wider model accessibility
– Visualization makes it easier to understand
– Domain experts can participate
– Customers can review models!

36

Summary

• Classic DSLs benefits found to be applicable in testing

– Driven by fully automatic model transformations

– Prevent illegal model construction & enforce methodology

• Challenge: Keep DSL lean and expressive

– Leanness yields simplicity but too lean may lead to
rejection!

– Important to use tools that enable flexibility by allowing
language evolution

• We believe DSL driven MBT will establish itself as the
next step in evolution of software testing

37

How to get started on a DSL design

• Define
– Concepts

– Rules

– Symbols

– Generators

• Focus on how you think about a problem not
how you (re)solve or describe it today
– DSLs are not effective as graphical general

purpose programming languages

38

How to get started: Concepts

• What are the different object types?
– Example: Screen, forms widgets, messages

• What are their properties? What kind of values
can they take? What is really relevant for testing?
– Example: Dependencies between form fields? Yes
– Example: Screen where button is located? Yes
– Example: Pixel location of a button? No
– Example: Underlying data base table structure? No

• What is the mapping domain concepts to
concepts in the general purpose language?
– Example: Button click maps to receiving a class

39

How to get started: Rules

• How many objects can exist?
– Example: Only one starting point

• How can objects be connected?
– Example: Only input actions can produce data

• Which property values have to be unique?
– Example: Screen and form names

• What are valid property values?
– Example: Only optional fields can be omitted

• When is a diagram ready for test generation?
– Example: At least one input and verification action

40

How to get started: Symbols

• What type of diagrams are needed?

• Which objects are important to visualize in
which diagram or at all?
– Example: Author of a diagram

• What is the absolutely essential information
important to get first understanding?
– Example: Action has a pre-condition

• How should the information be represented?
– Example: Symbol color, shape versus text

41

How to get started: Generators

• What type of information is needed to be
generated?
– Example: Code for test generation
– Example: Model documentation
– Example: “Live” model analysis

• In which order should objects be traversed to
produce the generated code?

• How should property values be processed and
converted to produce best target code?

• How to structure and modularize generator code
to maximize reuse?

42

Thank you!

• Questions, comments, counter arguments,
own experiences…

• Contact
– Juha-Pekka Tolvanen [jpt@metacase.com]

– www.metacase.com

– Stephan Schulz [stephan.schulz@conformiq.com]

– www.conformiq.com

http://www.metacase.com/
http://www.conformiq.com/
http://www.metacase.com/

43

References [1/2]

• Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling: Enabling
Full Code Generation, Wiley, 2008. http://dsmbook.com

• Puolitaival, O.-P., et al, Utilizing Domain-Specific Modeling for
Software Testing, Procs of VALID, October 2011

• Industrial presentations and tutorials at ETSI Conferences
– http://www.model-based-testing.de/mbtuc11/program.html
– http://www.elvior.com/model-based-testing-uc-2012/program

• MBT community http://model-based-testing.info/
• ETSI MBT Standardization

– http://portal.etsi.org/portal/server.pt/community/MTS/323
– MBT Modeling ES 202 951 http://pda.etsi.org/pda/queryform.asp

• “Functional Testing Tools Are Not Enough.”, Forrester Research Inc.
Report, Testing Tools Landscape, 2010
– Summary available via www.conformiq.com

• „Modellbasiertes Testen [German only], iX Studie, 01/2009
– Interesting (by now outdated) commercial MBT tool study from 2008

http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://model-based-testing.info/
http://model-based-testing.info/
http://model-based-testing.info/
http://model-based-testing.info/
http://model-based-testing.info/
http://portal.etsi.org/portal/server.pt/community/MTS/323
http://pda.etsi.org/pda/queryform.asp
http://www.conformiq.com/
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=33492
http://www.model-based-testing.de/mbtuc11/program.html

44

References [2/2]

• EADS, www.metacase.com/papers/MetaEdit_in_EADS.pdf
• NSN, Architecture in the language,

www.metacase.com/cases/architectureDSMatNSN.html
• Nokia, www.metacase.com/papers/MetaEdit_in_Nokia.pdf
• Panasonic, Proceedings of Domain-Specific Modeling, 2007,

www.dsmforum.org/events/DSM07/papers/safa.pdf
• Polar, Proceedings of Domain-Specific Modeling , 2009,

www.dsmforum.org/events/DSM09/Papers/Karna.pdf
• USAF, ICSE, http://dl.acm.org/citation.cfm?id=227842

http://www.metacase.com/papers/MetaEdit_in_EADS.pdf
http://www.metacase.com/cases/architectureDSMatNSN.html
http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf
http://www.dsmforum.org/events/DSM07/papers/safa.pdf
http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf
http://dl.acm.org/citation.cfm?id=227842
http://dl.acm.org/citation.cfm?id=227842

