
October 20, 2013

Test automation and Model-Based

Testing in agile dev cycle @ Spotify

Kristian Karl and Peng Ge

Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds, by Henrik Kniberg & Anders Ivarsson

Why automate?

• We want to be faster

• Shorter release cycles

• Facilitate the testing in

agile dev cycle

From: ”Intelligent Test
Automation” by Harry Robinson

What to automate?

Graphical user interface testing
Usability testing
Software performance testing
System testing
Functional testing
Load testing
Volume testing
Stress testing
Security testing
Scalability testing
Sanity testing

Unit testing
Smoke testing
Component testing
API testing
Regression testing
Installation testing
Maintenance testing
Recovery and failover testing.
Accessibility testing
Monkey testing
Integration testing

Graphical user interface testing

Our challenges
• Hard-to-test SUT

(Experiences of test automation: case study 1, An Agile Team’s Test Automation Journey:

The First Year), Dorothy Graham & Mark Fewster)

• Maintenance of automation

• Peoples expectations

• Flaky SUTs

• Flaky tests

• Re-prioritizations of non-critical but test hindering bugs

• Test data, test environments

• Supporting services

Our goals

• Create automated end-user regression tests on 4 major

platforms
1) Desktop – Windows and OSX

2) iOS – iPhone and iPad

3) Android

4) Webplayer

5) Some backend services

• To ease the workload for testers

• To deliver automated regression tests for a feature as a part of

definition of done

• To deliver short feedback loops to teams using Dashboards

Model-based testing

• The models are the abstraction layer

• The testers designs the automation

using models

• The developers implements the code

of the automation

Test automator
• A test automator is a professional Java developer.

• Test experience is not mandatory.

• A test automator is embedded in the squad (team).

• Test automators form their own Guild

GraphWalker: Model-Based Testing Light

What we needed:

•Easy to learn modelling syntax
•Open source, or freeware tools
•OS platform independency

Some words about GraphWalker

• GraphML [http://graphml.graphdrawing.org/]

• Simplistic syntax
• No exit or stop nodes
• Online generation
• Uses yEd as editor [http://www.yworks.com/en/products_yed_about.html]

http://graphml.graphdrawing.org/
http://www.yworks.com/en/products_yed_about.html

GraphWalker – Commands

• ANALYZE

• GUI

• HELP

• LOG

• MANUAL

• MERGE

• METHODS

• OFFLINE

• ONLINE

• REQUIRMENTS

• SOAP

• SOURCE

• XML

GraphWalker – Generators

• RANDOM

• SHORTEST_NON_OPTIMIZED

• A_STAR

• ALL_PATH_PERMUTATION

GraphWalker – Stop conditions
• REACHED_EDGE

• REACHED_VERTEX

• REACHED_REQUIREMENT

• EDGE_COVERAGE

• VERTEX_COVERAGE

• REQUIREMENT_COVERAGE

• TEST_LENGTH

• TEST_DURATION

• NEVER

GraphWalker – Vertex Keywords
• BLOCKED

• REQTAG

• SWITCH_MODEL

GraphWalker – Edge Keywords
• BLOCKED

• WEIGHT

GraphWalker – Java API

• Online generation
• Java Reflection
• Model <-> Java Class
• JavaDoc API

[http://graphwalker.org:8080/job/graphwalker/site/apidocs/index.html]

http://graphwalker.org:8080/job/graphwalker/site/apidocs/index.html

 @Test
 public void a_star() throws InterruptedException, StopConditionException, URISyntaxException {
 ModelHandler modelhandler = new ModelHandler();

 // Get the model from resources
 URL url = MultiModelTest.class.getResource("/model/ShoppingCart.graphml");
 File file = new File(url.toURI());

 // Connect the model to a java class, and add it to graphwalker's modelhandler.
 // The model is to be executed using the following criteria:
 // EFSM: Extended finite state machine is set to true, which means we are using the data domain
 // in the model
 // Generator: a_star, we want to walk through the model using shortest possible path.
 // Stop condition: Edge coverage 100%, we want to walk every edge in the model.
 modelhandler.add("Amazon", new Amazon(file, true, new A_StarPathGenerator(new EdgeCoverage(1.0)), false));

 // Start executing the test
 modelhandler.execute("Amazon");

 // Verify that the execution is complete, fulfilling the criteria from above.
 Assert.assertTrue(modelhandler.isAllModelsDone(), "Not all models are done");

 // Print the statistics from graphwalker
 String actualResult = modelhandler.getStatistics();
 System.out.println(actualResult);
 }

GraphWalker – Combined Stop conditions
 @Test
 public void addMultipleGenerators() throws StopConditionException {
 ModelAPI model = new ModelAPI("graphml/org.graphwalker.multipleModels/a.graphml");
 model.setWeighted(false);
 model.setExtended(true);

 CombinationalCondition combinationalCondition = new CombinationalCondition();
 combinationalCondition.add(new RequirementCoverage(1.0));
 combinationalCondition.add(new EdgeCoverage(1.0));

 AlternativeCondition alternativeCondition = new AlternativeCondition();
 alternativeCondition.add(combinationalCondition);
 alternativeCondition.add(new TimeDuration(900));

 CombinedPathGenerator generator = new CombinedPathGenerator();
 generator.addPathGenerator(new A_StarPathGenerator(new ReachedVertex("C")));
 generator.addPathGenerator(new RandomPathGenerator(alternativeCondition));

 model.setGenerator(generator);
 Assert.assertTrue("Failed setting up the model", model.getMbt().hasNextStep());
 }

D
e

m
o

Developers and developers

• Why not use the developers for TA?

• Why use developers for TA?

• Using Test API’s

• Defined by TA

• Implemented by developers

Before

android.view.View seekBarView =

solo.getView(com.spotify.mobile.android.ui.view.CancellableSeekBar.class, 0);

int[] xy = new int[2];

seekBarView.getLocationOnScreen(xy);

solo.clickOnScreen(xy[0] + 9 + (seekBarView.getWidth() - 18) * position, xy[1] +

seekBarView.getHeight() / 2.0f);

After

page().seekTrack(position)

Live Tutorial
• How to model a simple use case

Model an end user accpetance [regression] test of the Search

functionality in the Spotify Webplayer. This is done by QA.

• Refactor the model

Adapt the model so GraphWalker accept it’s syntax. This is done by

the test automator, and then reviewed by QA.

• Develop the test auomation code

The test automator writes the code that impements model.

GraphWalker is integrated into the code, and executes the test

together with TestNG. This is don by the test automator.

Q & A

Source code is provided at this Dropbox link.

