
© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part

A Structured Approach for

Efficient Model-Based Testing in

Large IT Projects

Jean-Pierre Schoch – Bruno Legeard

{jean-pierre.schoch, bruno.legeard}@smartesting.com

UCAAT 2013

22 – 24 October - Paris

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
2

Agenda

 MBT for Large IT Systems

– Current challenges of testing large-scale applications

– Levels of testing addressed by model-based testing

 Building the Test Generation models

– Understanding and controlling your test requirements

– Understanding and composing business process models

– Designing the test generation models

 Reuse and Multi-Model Systems

– Enabling reuse and collaborative work

– Structuring models as a layered architecture

© SMARTESTING 2012

Large-scale Enterprise Information
Systems

 System of systems & Complex composite systems
 Multiple applications

• Mix of Bespoke and Packaged applications

• Mix of data-oriented and process-oriented applications

 Multiple targeted platforms (PC, Smartphone, Pad)

 Testing needs

 Business workflow and business rules oriented

 Application testing, but also end-to-end testing

 Requirements and Business Process coverage

 80% of test execution still manual (and for some part will remain

manual)

3

© SMARTESTING 2012
4

Model-Based Testing in a Nutshell

Business

Needs

Functional

Tests

Model Assets for Automated Test Generation

Test Design Automation
Test

Repository
MBT Automated Traceability

MBT Test Production

automated manual

Test Execution

© SMARTESTING 2012
5

Roles in the Model-Based Testing Process

Test

Assets

Model

Assets

Business

Analyst

Automation

engineer

Test

Analyst

Business

Rules &

Flows

defines

action-word

based testing

automation

Expected

Behavior

& Data

Business

model

Test Generation

Model

refines
Tester

© SMARTESTING 2012

Models for Automated Test Generation

Business Process Model (BPMN)

Business Rules and Behavioral
Model (UML/OCL)

Modeling notations

Business Entities and
Logical Test Data (UML)

6

© SMARTESTING 2012
7

What Types of Tests?

7

End-to-end testing,

core business processes

Acceptance testing

of multi-applications

Functional Testing

of single applications

IS
qualification

Integrated
application services

qualification

Standalone business application

qualification

Model-Based

Testing

M
o

re
 t
e

s
ts

 (
m

a
x

re
q

 c
o

v
e

ra
g

e
 w

.

m
in

.
s
e

t
o

f
te

s
ts

)

L
e

s
s
 t
e

s
ts

 (
m

o
s
t

s
ig

n
if
ic

a
n
t
“b

u
s
in

e
s
s
”

s
c
e

n
a

ri
o

s
)

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
8

Agenda

 MBT for Large IT Systems

– Current challenges of testing large-scale applications

– Levels of testing addressed by model-based testing

 Building the Test Generation models

– Understanding and controlling your test requirements

– Understanding and composing business process models

– Designing the test generation models

 Reuse and Multi-Model Systems

– Enabling reuse and collaborative work

– Structuring models as a layered architecture

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
9

Modeling

Test Generation and Validation

Publishing

Test Management and Execution (1)

Script Development (Automation only) (1)

Project Management and Supporting Activities (1)

(1) Not covered in this tutorial

Iteration 1 Iteration 2

…

Start

Phases Major Activities

Time

The Test Generation Process avec
Smartesting CertifyIt

Test Objective Analysis

Modeling

P
re

p
a
ra

ti
o
n

&
 A

n
a
ly

s
is

D

e
s
ig

n

T
e

s
t
P

u
b
lic

a
ti
o
n
 &

T
e
s
t
M

a
n
a
g
e
m

e
n
t

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
10

Preparation & Analysis
1. Defining Test Requirements

 Tests typically created to verify specific requirements

– Formal or not

– Capture all test requirements in a Test Objective Charter (next slide)

– The TOC is used as the “contract” between:

 The different stakeholders, typically represented by business analysts

and functional experts

AND

 The test analysts responsible for designing the behavioral model(s)

 References in the models to the covered requirements

provide the basis for:

– Automatic traceability between requirements and generated tests

• Traceability links are part of the info published into the test environment

– Accurate progress tracking

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
11

Preparation & Analysis
2. Test Objective Charter

Use Cases

Test Objective Charter

Business Processes

Application Mockups

And all Other Sources…

• Unique reference for “test”

requirements

• Can be exported from existing

requirement repositories

• Includes attributes such as

priority, criticality, target release,

etc.

• The “contract” between the BAs

and the modeling team

Textual Requirements

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
12

Preparation & Analysis
3. Capturing System Flows

 System Flows = Sequences of operations and/or activities

performed by human users and/or external systems, and the

system’s various responses

– Many types: textual or graphical, technical or business-oriented (e.g.

workflows, business process diagrams, use case flows of events)

 Business Flows = business view of the system under test

– Identify Business Actions (BAs) = elementary business units

– Tests = sequences of BAs

– Business flows represented as Business Processes

 Application Flows = technical details of the business flows

– Identify Test Actions (TAs) = the “implementation” for the BAs

– BAs are sequences of TAs

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
13

Preparation & Analysis
4. Business Processes

 CertifyIt supports Business Process Modeling using BPMN

(Business Process Modeling Notation)

– If non-BPMN business processes are already available in other

tools/standards, they can be imported

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
14

Preparation & Analysis
5. Strategy for the Test Generation Process

 Top-Down Strategy

– Most natural approach:

• Create the BPs (BAs are

produced)

• Implement the BAs (TAs are

produced)

• Generate the tests

 Meet-in-the-Middle Strategy

– If you have trouble identifying

the “right” BPs:

• Identify the BAs first

• Implement them

• Generate test cases using

“test-only” BPs

BPMN

UML

Tests

Business processes as sequences of BAs

BAs implemented as sequences of TAs

Generated tests ready to be published

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
15

Building the Test Generation Models
1. Business and Application Scenarios

Submit

Timesheet

Click

‘Create

Timesheet’

Login as

Regular

Employee

Login as

Admin

Click

‘Approve

Timesheets’

Find

Employee

Approve

Selected
…

…

Business View:

Create

Timesheet

Approve

Timesheet

…

Application View:

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
16

Building the Test Generation Models
2. Business and Application Scenarios (cont’d)

BA operations are

mapped to “application”

scenarios, i.e.

sequences of TAs

Business scenarios are higher-level

constructs that exploit the fine-grained

UML model

Business tasks are mapped

to BA operations in the Test

Generation model

Submit

Timesheet

Click

‘Create

Timesheet’

Login as

Regular

Employee

Login as

Admin

Click

‘Approve

Timesheets’

Find

Employee

Approve

Selected
…

…

Business scenarios

are instances of

business processes

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
17

Building the Test Generation Models
3. Design Driven by BAs

 Business Actions

– The building blocks of your test projects

– Every test is a sequence of BAs

– Understanding the BAs is the key to a successful test project

• This means first analyzing the BAs based on the test strategy and on the

previous artifacts (TOC, Business Processes), and capturing the results

in a BA specification

 The BA specification

– Prerequisites to use the BA

– Factors of variability: all the elements that impact the behavior of the

BA (and that requires testing)

– Usage context: all the valid configurations for use of the BA

(corresponding to possible combinations of the factors of variability)

– Application workflow: the actions that a user would need to take to

achieve the desired outcome

White-box view of the BA

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
18

Building the Test Generation Models
4. Example of a BA Specification

 Prerequisites: To be connected (any user)

 Factors of variability:

– Connected user: Regular, Admin, Manager

– Leave type: annual leave, sick leave, family

leave, etc.

– User inputs:

• Success: 1 day or less, 2 days or more

• Error: mandatory field(s) missing, invalid date format, etc.

 Usage context:

 Application workflow:

1. Select the menu Leave > Apply

2. Fill out the form (based on the cases being tested) and click ‘Apply’

Connected user Leave type User inputs
Regular Each type Success (2 days or more) Nominal case
Regular Indifferent Success (1 day or less) Nominal case
Regular Indifferent Each error case Error cases

Other users Indifferent Success (any case)

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
19

Building the Test Generation Models
5. Equivalence Classes as Enumerations

 Equivalence Classes

– Black-box testing technique

– Divides all possible inputs (and outputs) into equivalence classes:

• The test that results from the representative value for a class is said to be

“equivalent” to the other values in the same class

– Example: UNDER_AGE (less than 18), YOUTH_AGE (between 18 and

25), ADULT_AGE (over 25)

 Modeled as enumerations

to represent the values of

the factors of variability

– Each value documented in

natural language, e.g.:

ANNUAL_LEAVE = “Annual Leave”

EXCEEDS_LEAVE_ENTITLEMENT = “Enter a duration that exceeds the number

of days available”

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
20

Building the Test Generation Models
6. Modeling the BA

 BA = model operation

– Prerequisite:

• Precondition of the operation

– Factors of variability:

• Parameters of the operation

based on enumerations

– Usage context:

• “Decision table” associated with the operation

– Application workflow:

• Several solutions: here using “structured descriptions” in the BA operation

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
21

Building the Test Generation Models
7. Usage Context as a Decision Table

Double-click the task in the business

process to open the decision table

We will see later

on how to select

criteria to

generate tests

based on one or

more lines in the

decision table

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
22

Building the Test Generation Models
8. Application Workflow as a Structured Description

 CertifyIt provides the ability to use “multiple-step” description,

which will eventually produce separate tests

– The two columns correspond to the “design steps” and “expected

results” in the future tests

– On step #2, note the reference to the BA parameters and the use of

“.description” to access their underlying descriptions in natural

language

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
23

Building the Test Generation Models
9. Associate Test Requirements with the Model

 To associate a requirement with the model:

– Drag-and-drop the requirement from the imported TOC (imported into

the project) to the proper location in the model

 Using AIMs as Refinement of

REQs

– Requirements often too coarse-

grained: “AIM” tags are used to

provide additional information
The REQ is now divided into two

AIMs. It will be completed when

(and only when) the AIMs have

been processed.

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
24

Building the Test Generation Models
10. Using Test Suites to Select Test Criteria

 Use business scenarios to create test objectives

– Use dedicated keywords to target specific objectives (#behaviors

below to select all NOMINAL_CASEs specified in decision table)

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
25

Building the Test Generation Models
11. Generating Tests

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
26

Building the Test Generation Models
12. Publishing Tests

 Generated tests can be published to most standard test

environments (HP ALM, IBM RQM, Microsoft Excel, etc.)

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
27

Agenda

 MBT for Large IT Systems

– Current challenges of testing large-scale applications

– Levels of testing addressed by model-based testing

 Building the Test Generation models

– Understanding and controlling your test requirements

– Understanding and composing business process models

– Designing the test generation models

 Reuse and Multi-Model Systems

– Enabling reuse and collaborative work

– Structuring models as a layered architecture

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
28

Multi-Model Systems and Reuse
1. Introduction to Multi-Model Systems

 Applicability

– Large applications divided into modules

– IT systems divided into separate applications

 Each separate module/application becomes of separate test

project

– See next slide for a representative architecture

 Purpose of multi-model systems

– Need different levels of testing

• Functional tests at the level of individual applications/modules

• End-to-end tests involving two or more individual applications/modules

– Enable collaborative work with minimal impact/cost

– Enable reuse

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
29

Multi-Model Systems and Reuse
2. A Layered Architecture

 Layered Architecture

– Involves a top-down, hierarchical

structure of models

• Models at one level use only models at

lower levels, and

• Are independent of client models

 Different Types of Projects

– E2E project produces end-to-end tests

based on high-level business processes

– Module-n projects are projects that

produce functional tests at the

application/module level

– Common projects capture enumerations

and classes common to several other

modules

Dependencies

(source depends

on targets but not

the other way)

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
30

Multi-Model Systems and Reuse
3. Reuse

 Reuse of UML elements: Common elements captured in a

Common model project (or more) offer a first level of reuse

but it remains limited (relatively few truly reusable elements)

(see notes)

 True reuse is found in the reuse of business processes and

the reuse of behavioral models (case of the E2E project)
• Makes it possible to reuse full model projects “as is” (… when well

designed)

• Imagine for instance systems built around SAP modules or any other

ERP…

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part
31

Multi-Model Systems and Reuse
4. Collaborative Work in a Graphical Environment

 Best Practice: NEVER allow a model to be modified by more

than one user at a time

 Recommended to use an architecture with multiple projects

 In all cases, use a version control tool to control access to

your separate units (models and other artifacts)

– The tool must support locking a file before it is modified: only one

person at a time can make changes to a given unit

– Many version-control tools available: open-source (such as CVS and

SVN), IBM Rational ClearCase, ...

© SMARTESTING 2010-2013 – This document is the property of Smartesting. It may not be reproduced in whole or in part

Thank you

for your attention

twitter.com/smartesting

