
By Chan Chaiyochlarb

Lesson learnt from integrating MBT for
Messaging App

Motivations for adopting MBT

Find bugs earlier

Exploration of missed paths

Increase validation

Easy to adjust to specification changes

Real world scenarios

Help find the last 20% of bugs

Reduce test cost

MBT For Messaging App

90% of test automations are MBT generated

Real user End-to-End scenarios

Permutations of actions yielding high coverage

Error scenarios

UI and backend verifications

MBT finds the most high priority bugs

Uncover a lot of functional specification bugs

Catch a lot of regressions

Lots of validations
MBT

49%

Traditional

automation

25%

Manual

26%

Priority 1 bugs

Find bugs early

Test the specification

Model development in parallel with product

Bug

Count

Milestone

MBT Automation Manual

Agility

Easily react to new feature changes

Reusability of test semantics

Early test engagement

Drive quality upstream

MBT is not easy

Different mind shift from traditional testing

Steep learning curve and high ramp up cost

Need to pick the right tool set

Difficult to explain test coverage

Complex Design

Single model which represents the whole Messaging Application

Model is nearly as complex as the product

Bug in model is difficult to find

State tracking and other book keeping (for validation) make things even
worse

Every behavioral change has large impact to existing scenarios

Maintenance Costs

Complexity kills

Bug ratio

More test code means higher maintenance costs

Bug turn around time nearly double developers

Back to our original motivations

Find bugs earlier Yes

Exploration of missed paths Yes

Increase validation Yes

Easy to adjust to specification changes Yes

Real world scenarios Maybe

Help find the last 20% of bugs Maybe

Reduce test cost No

What did we learn?

MBT is different

Model Design is important

Smaller model is okay

It’s okay to have multiple models for different feature set

“Use MBT to generate a lot of test cases” paradigm is misleading

Resist the temptation to use MBT for everything

Knowing MBT strengths and weaknesses

MBT is highly effective for stateful system, or with systems lots of
input/output combinations

For stateless system with simple inputs/outputs, it might be more effective
using data-driven approach instead

For undeterministic behavior, MBT might not be a good fit

 Example: Image resizing algorithm, data decompressor, etc.

