= Microsoft

_esson learnt from integrating MBT for
Messaging App

By Chan Chaiyochlarb

2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft,
and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.



Why MBT?



Motivations for adopting MB

Find bugs earlier

Exploration of missed paths

Increase validation

Fasy to adjust to specification changes
Real world scenarios

Help find the last 20% of bugs

Reduce test cost




MBT For Messaging App




Al e W g 2:01

BILL G

MBT For Messaging App
Hello Bill

Hey Chan
90% of test automations are MBT generated 2002
Real user End-to-End scenarios el caeTi
Permutations of actions yielding high coverage 20
ErrOr SCENarios )G -

UI and backend verifications I—

HONONG/



Analysis: The Good



MBT finds the most high priority bugs

Priority 1 bugs

Uncover a lot of functional specification bugs
Catch a lot of regressions
Lots of validations

BR Microsoft



Find bugs early

Test the specification
Model development in parallel with product

Bug
Count

s \|BT e Automation === Manua

Milestone
BR Microsoft



Agility

Fasily react to new feature changes
Reusability of test semantics

Farly test engagement

Drive quality upstream




Analysis: The Bad



MBT Is not easy

Different mind shift from traditional testing
Steep learning curve and high ramp up cost
Need to pick the right tool set

Difficult to explain test coverage



Complex Design

Single model which represents the whole Messaging Application
Model is nearly as complex as the product
Bug in model is difficult to find

State tracking and other book keeping (for validation) make things even
Worse

Every behavioral change has large impact to existing scenarios



Maintenance Costs

Complexity kills
Bug ratio

Product
Bug

1

More test code means higher maintenance costs
Bug turn around time nearly double developers

BR Microsoft



Reflections



Back to our original motivations

Find bugs earlier \ES
Exploration of missed paths \ES
Increase validation \ES
Fasy to adjust to specification changes \ES
Real world scenarios Maybe
Help find the last 20% of bugs Maybe
Reduce test cost NO




Moral of the story



What did we learn?

MBT is different

Model Design is important

Smaller model is okay

[t's okay to have multiple models for different feature set

"Use MBT to generate a lot of test cases” paradigm is misleading
Resist the temptation to use MBT for everything



Knowing MBT strengths and weaknesses

MBT is highly effective for stateful system, or with systems lots of
input/output combinations

For stateless system with simple inputs/outputs, it might be more effective
using data-driven approach instead

For undeterministic behavior, MBT might not be a good fit
Example: Image resizing algorithm, data decompressor, etc.



Thank you



