Welcome to the World of Standards

World Class Standards

THE ETSI TEST DESCRIPTION LANGUAGE (TDL)

Results from the ETSI project STF 454

A. Ulrich, G. Adamis, F. Kristoffersen, Ph. Makedonski, M.-F. Wendland, A. Wiles

© ETSI 2013. 1st User Conference on Advanced Automated Testing, Paris, France, 22 – 24 Oct 2013

Motivation and introduction

Oesign principles

An example

Conclusions, next steps

MOTIVATION AND INTRODUCTION

Validating Complex Systems

Engineered systems become more and more complex

- Complex design (\rightarrow system of systems)
- Complex behavior (\rightarrow real-time)
- Complex data (→big data)
- Validation and testing need to cope with complexity
 - Proper modeling techniques
 - Proper test automation
 - Proper fault analysis techniques

Intelligent Transport Systems © ETSI

Software Development Turns Agile

An agile process follows different approaches

- Story/feature driven modeling
- Test driven development, etc.
- Leads to scenario-based approach in testing
 - Describe a scenario of interacting with the system
 - Define test objectives from requirements and connect them to scenarios
 - Derive tests from scenarios and automate them

TDL Addresses Needs from Practice

ETS

TDL for testing reactive distributed real-time systems

- Provides common black-box testing concepts
- Adjustable to domain-specific needs
- Supporting agile testing process

TDL is standardized

- Clear semantics
- Interoperability of tools and test specifications
- Maintained and kept updated with user needs

TDL use cases

- Manual specification of tests for functional/conformance/interoperability testing
- Representing tests from other sources, e.g. output from MBT test generators
- Documentation of tests

DESIGN PRINCIPLES

TDL is Adjustable by User

Concrete syntax may cover only parts of the meta-model

ETS

- Meta-model can be extended by a user if need arises
- User extensions of the meta-model can be subjected to further TDL standardization and maintenance

Key elements of a TDL specification

Test configuration

• Set of interacting components in the roles Tester or SUT

ETS

Test description

- Represents the expected foreseeable (passing) behaviour,
 i.e. any deviation is a fail
- Expresses a test in terms of interactions of data exchanged between tester and SUT components
- Interactions are **totally ordered**, i.e. they are implicitly synchronized among components
- Test data
 - Represented as abstract name tuples

TDL Meta-Model Overview

ETS

AN EXAMPLE

Example: Scenario on a Rail Interlocking System (Siemens, MBAT)

testDescription: StopAndProceed

«testObjective» reference RQ-1.2.3 description "Verify that the train stops at a signal showing 'stop' and proceeds after signal aspect changes to 'proceed'." «SUT» «Tester» **TrainSystem** Operator : CompType : CompType <u>gate1</u> gate1 step RequestTrainPower(1.0) RequestSwitchPosition(85, Reverse) ATPStatus(516, 0) [interrupt] ATPStatus(Not 516) step RequestSignalAspect(516, Proceed) ATPStatus(912) [interrupt] ATPSatus(Not 912)

ETS

Test Configuration

Test Description

Generated Editor for Textual TDL Specifications (EMFText)

CONCLUSIONS, NEXT STEPS

Conclusions, Next Steps

ETSI

- TDL meta-model is available currently as an ETSI draft standard
 - Further validation of the meta-model necessary
 - Final draft for publication planned for January 2014
- Next steps
 - Design of concrete syntaxes (graphical + exchange format)
 - Getting tool support: editors, analyzers, test generators
 - Further refinement of the TDL meta-model
 - Extend TDL to support test automation
 - Extensions to ensure executability
 - Composition of test descriptions \rightarrow User story models

Team & Acknowledgement

Team

Andreas Ulrich, Siemens AG, <u>andreas.ulrich@siemens.com</u> (STF lead)
Gusztáv Adamis, Ericsson, <u>Gusztav.Adamis@ericsson.com</u>
Finn Kristoffersen, Cinderella, <u>finn@cinderella.dk</u>
Philip Makedonski, U Göttingen, <u>makedonski@informatik.uni-goettingen.de</u>
Marc-Florian Wendland, FhG FOKUS, <u>marc-florian.wendland@fokus.fraunhofer.de</u>
Anthony Wiles, ETSI CTI, <u>Anthony.Wiles@ETSI.ORG</u>

Acknowledgement

A. Ulrich, Siemens AG acknowledges partial funding of this activity from the ARTEMIS Joint Undertaking, grant agreement no. 269335 (MBAT) and the German BMBF.