

Application of Model-Based Testing to validation of new nuclear I&C architectures

François Chastrette, Frédérique Vallée – All4tec

Luc Coyette – Esterel Technologies

www.all4tec.net

Contents

Context

Case study: a simple Instrumentation and Control (I&C) system

□ I&C specification

- □ Model-Based Testing approach for early validation of an I&C specification
- Preliminary Results
- **Conclusion**

Contrôle-commande numérique pour le nucléaire

□ A large cooperative R&D project

- ⇒ Goal: a modular workbench for functional engineering activities in nuclear I&C (Instrumentation and Control) systems
- ⇒ Includes all major French players in the nuclear I&C field
 - Operator + architect/engineer (EDF), I&C systems providers (AREVA, Rolls-Royce, Alstom, Atos), technology suppliers (Esterel Technologies, CORYS, All4tec, Predict), research labs (CEA, ENS Cachan, CRAN, Telecom Paris Tech, INRIA, INP Grenoble)
- ⇒ Targets improvement of tools
 - SCADE, MaTeLo, Safety Architect, CORYS ALICES, etc.
- □ This presentation covers only one sub-project
 - ⇒ <u>Early functional</u> validation (i.e. validation of <u>requirements</u> before implementation)
 - Tests should be reusable throughout the system development lifecycle
 - ⇒ Scope: one I&C function
 - I.e. the result of upstream analysis

Context – Lifecycle Overview – 1 / 2

ESTEREL

Technologies

www.all4tec.net

Context – Lifecycle Overview – 2 / 2

ESTEREL

Technologies

www.all4tec.net

Context – Lifecycle of an I&C Function

ESTEREL Technologies

One particular I&C function

⇒ One of the components of a larger plant function: back-up power supply (BPS)

⇒ Is the control system for the Emergency Diesel Generator (EDG)

- Purpose: if Main Power Supply is lost, start the Diesel generators, then reconnect the major components of the plant
 - Provide an orderly load sequence to prevent heavy transients on the emergency diesel generator solicitation
- Features
 - ⇒ Many Boolean inputs (24)
 - Input redundancy (AND / OR) is defined by Quality of Service requirements allocated to this function
 - ⇒ Boolean outputs (12)
 - ⇒ Complex timing constraints (orderly reload sequence: 7 or 9 scheduled actions at timed intervals)

I&C Specification – 1 / 2

Goal: Early validation of functional requirements

- Combination of Model Based Design and Model Based Testing
- Models developed by independent teams from same requirements

□ Model Based Design (MBD)

- ⇒ Graphical model to describe a system from textual requirements
- Executable model allowing clarification of the early set of requirements and early testing (before writing any code)
- ⇒ Full traceability to textual requirements
- ⇒ All verifications performed at model level

The SCADE formal notation

I&C Specification – 2 / 2

ALL4TEC

□ Functional requirements

- ⇒ Textual description
- ⇒ System in its environment

Functional specification (MBD)

- Detailed description of dynamic behaviour and algorithms
- Traceability to functional requirements

Functional validation (MBT)

Tests scenarios generated by MaTeLo are executed under QTE

Ignored inputs

- ⇒ Requirement: in state S (...), all other inputs are ignored
- ⇒ Exhaustive approach
 - Set "other" inputs one at a time

Random interrupts in a sequence of timed actions

ESTERE

echnologie

- Requirement : if signal S becomes active during the reloading sequence, perform steps 1 and 2, then continue sequence where it was interrupted
- Stochastic approach ruled out (MaTeLo
 arcs coverage mandatory)

Tools Integration

Test scripts are generated by MaTeLo in the TCL language

- MaTeLo uses SCADE QTE functions to set inputs, read outputs, handle time
- Requirement traceability is maintained
 - Requirements ID's included in test scripts as comments
- Simple and powerful integration
 - ⇒ Automated execution of tests
 - Seamless traceability of requirements

- SSM::set Model/Input SSM::get Model/Output SSM::cycle or SSM::cycle \$n
- # Requirements: SEQD_CTL 08

MBT Preliminary Results

ESTERE

Technologie

U Verification of requirements (Functional Validation)

⇒ Errors in the (fake) requirements used for this project were indeed found

⇒ Errors in both models were found as well

100% MC/DC coverage achieved for test model and design model

www.all4tec.net

Conclusion

ESTEREL ALL4TEC

□ Integration of Model-Based tools has significant added value

- ⇒... and is quite easy to achieve
- □ The combination of early prototyping with MBT makes it possible to verify requirements very early in the lifecycle

⇒ Inconsistencies and lacks in the requirements were easily found

- The same test scripts can (and will) be reused later to validate successive implementation refinements of this function
 - Thanks to a very elaborate integration environment

□ The Connexion project goes on...

