

WHY TESTING AUTOMATION IS THE PERFECT DOMAIN FOR MACHINE LEARNING

Presented by Tamas Cser

Al - Man vs Machine

Machine Learning Opportunities

Current State

72%

Al in testing automation

Human Intelligence

Good for abstract feature identification, bad at scale.

Machine Intelligence
Great at scale, learning anomalies.

Detect Anomalies in Large Dynamic Data

Week 1: Week 2: Week 3: Week 4:

Results 1..5: Results 1..5: Results 1..5: Results 1..5:

Result A Result B Result A Result B Result B Result B Result C Result D

Result D Result D Result E

Result E Result E Result F

etc. etc. etc. etc.

Fingerprint the data to determine numeric range for "normal"

SUVERVISED OR UNSUPERVISED?

Supervised Learning

Unsupervised Learning

ANOMALY DETECTION WITH UNSUPERVISED ML

MODEL SELECTION

- Unsupervised
 - Gaussian Mixture
 - Streaming K-Means

GAUSSIAN DISTRIBUTION

K-Means Clustering

Streaming K-Means – Adaptive Learning

Loop if

Update the Reassign objects

The initial data set

- Partition objects into *k* nonempty subsets
- Repeat
 - Compute centroid (i.e., mean point) for each partition
 - Assign each object to the cluster of its nearest centroid
- Until no change

cluster

centroids

Algorithm (Streaming K-Means)

- Model Training (Normal dataset)
 - K: Number of clusters
 - Normalization of data
 - Engineering (categorical transformation/ dummy coding)
 - Labels/Entropy
- Trainer will yield centroid and threshold
- Validation
 - Anomalies: data points away from threshold from centroid

Algorithm (Streaming K-Means)

- ct : previous centre of cluster
- nt : number of points in a cluster
- xt : cluster centre for current data
- mt : number of points added in current batch
- Decay factor: ω

$$c_{t+1} = \frac{c_t n_t \omega + x_t}{n_t \omega + m_t} \qquad n_{t+1} = n_t + m_t$$

Happy Coding

Don't Forget Machine Learning

THANK YOU

tamas@functionize.com

