

BIG DATA INTERPRETATION AND CHALLENGES IN MOBILE NETWORK TESTING

Benjamin Teke and Zoltán Elzer

TESTING CHALLENGES

MOBILE TELEPHONY NETWORK

standards

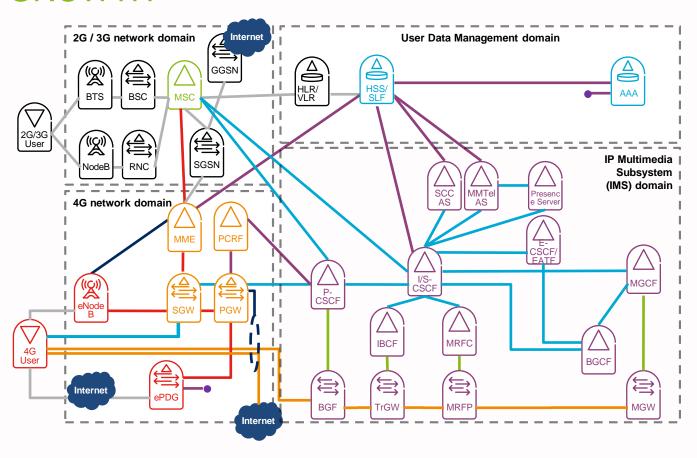
Communication according to

TESTING CHALLENGES

COMPLEXITY GROWTH

2G

3G

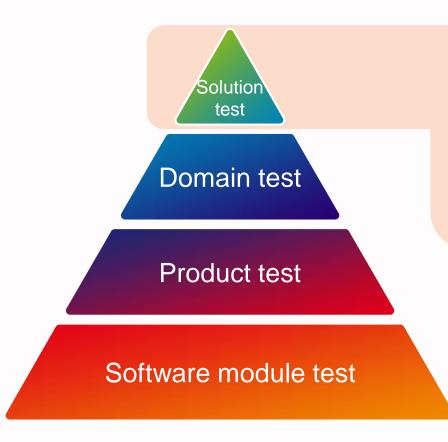

4G (LTE)

Voice over 4G (VoLTE)

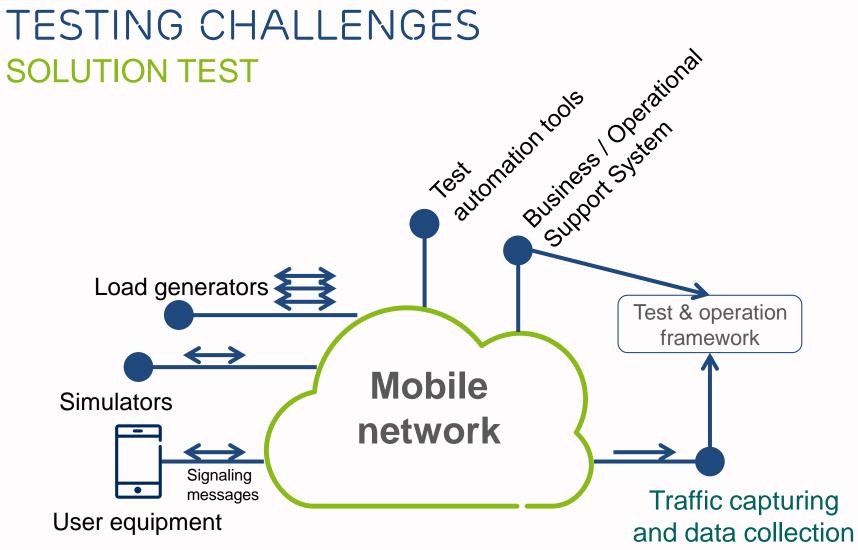
Voice over WiFi

More complex network architecture

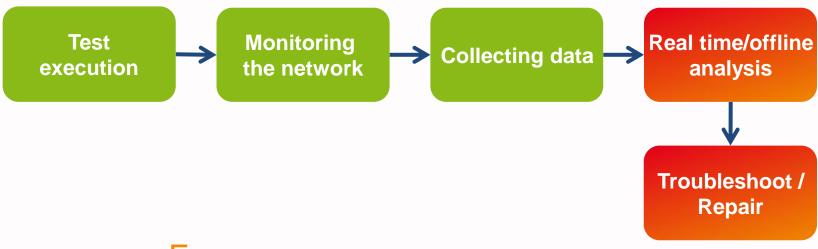
MORE TESTING



TESTING CHALLENGES TEST LEVELS IN MOBILE NETWORK DEVELOPMENT


- Focus on end-to-end network
 - Communication between network functions
 - Check interworking and end-to-end behaviors

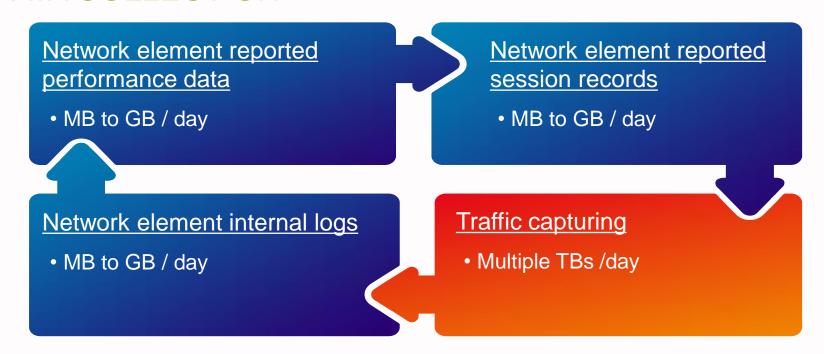
TESTING CHALLENGES



BEYOND TESTING AFTER TEST EXECUTION

Automation of steps is required!

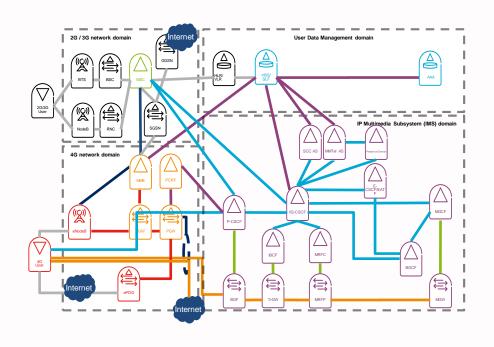
Focus


Automated analysis, troubleshoot and repair based on collected data

BEYOND TESTING DATA COLLECTION

SUM data size: "Small" VoLTE network = ~1-2 TByte/day

Example: 300+ application level messages per VoLTE call



DATA COLLECTION - TRAFFIC CAPTURING

"How do we get the data?"

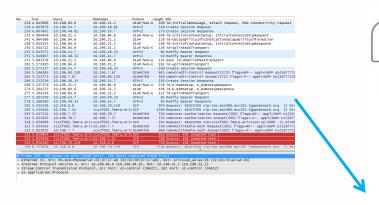
- Monitoring
 - Various points of the network
 - Collect signaling messages
- The gathered data
 - Linear list of messages
 - Not certainly in the expected order

⊕ Stream Control Transmission Protocol, Src Port: x2-control (36422), Dst Port: s1-control (36412)

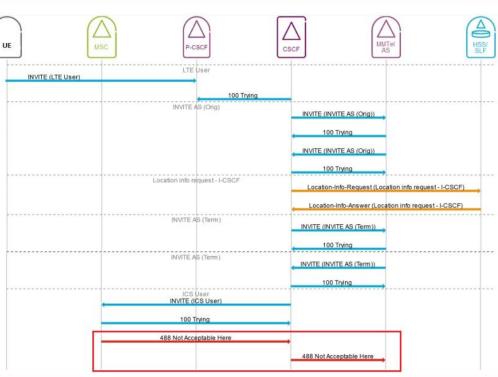
CORRELATION – THE TRADITIONAL METHOD

lo. Time	Source	Destination	Protocol	Length Info
228 4.84	3066 10.196.84.6	10.196.21.2	S1AP/NAS-E	
229 4.84	5876 10.196.14.7	10.196.48.81	GTPV2	328 Create Session Request
230 4.80	7842 10.196.48.81	10.196.14.7	GTPv2	170 Create Session Response
235 4.90	4409 10.196.21.2	10.196.84.6	S1AP/NAS-E	306 id-InitialContextSetup, InitialContextSetupRequest
243 4.96	4386 10.196.84.6	10.196.21.2	S1AP	126 id-UECapabilityInfoIndicationUECapabilityInformation
248 5.00	4145 10.196.84.6	10.196.21.2	S1AP	106 id-InitialContextSetup, InitialContextSetupResponse
250 5.04	4712 10.196.84.6	10.196.21.2	51AP/NAS-E	126 id-uplinkNASTransport
251 5.04	5572 10.196.14.7	10.196.48.33	GTPv2	81 Modify Bearer Request
252 5.04	6907 10.196.48.33	10.196.14.7	GTPV2	93 Modify Bearer Response
253 5.00	3378 10.196.21.2	10.196.84.6	51AP/NAS-E	134 SACK id-downlinkNASTransport
261 5.17	3910 10.196.84.6	10.196.21.2	51AP/NAS-E	162 id-uplinkNASTransport
262 5.17	5137 10.196.14.7	10.196.48.33	GTPv2	299 Create Session Request
263 5.19	6283 10.196.60.130	10.196.7.67	DIAMETER	842 cmd=Credit-Control Request(272) flags=RP appl=3GPP Gx(16777
264 5.23	2373 10.196.7.67	10.196.60.130	DIAMETER	546 cmd=Credit-Control Answer(272) flags=-P appl=3GPP Gx(167772
266 5.23	3256 10.196.48.33	10.196.14.7	GTPV2	226 Create Session Response
268 5.22	7379 10.196.21.2	10.196.84.6	51AP/NAS-E	238 id-E-RABSetup, E_RABSetupRequest
274 5.26	4225 10.196.84.6	10.196.21.2	S1AP	106 id-E-RABSetup, E_RABSetupResponse
275 5.20	4339 10.196.84.6	10.196.21.2	51AP/NAS-E	122 id-uplinkNASTransport
277 5.20	5156 10.196.14.7	10.196.48.33	GTPv2	81 Modify Bearer Request
278 5.20	6300 10.196.48.33	10.196.14.7	GTPv2	93 Modify Bearer Response
291 5.4	1528 10.248.0.8	10.196.29.129	SIP	970 Request: REGISTER sip:ims.mnc080.mcc262.3gppnetwork.org (1 k
292 5.4	4446 10.196.7.41	icscf001.lmera.er	icSIP	1260 Request: REGISTER sip:ims.mnc080.mcc262.3gppnetwork.org (1 k
293 5.4	7131 10.196.7.37	10.196.39.7	DIAMETER	530 cmd=User-Authorization Request(300) flags=RP appl=3GPP Cx(1
311 5.67		10.196.7.37	DIAMETER	374 cmd=User-Authorization Answer(300) flags=-P appl=3GPP Cx(16
318 5.67	9996 icscf001.lmera	a.ericscscf002.lmera.er	icSIP	214 Request: REGISTER sip:scscf002.lmera.ericsson.se:5060 (1 bir
321 5.6	4563 scscf002.lmera	a.eric10.196.7.7	DIAMETER	530 cmd=Multimedia-Auth Request(303) flags=RP appl=3GPP Cx(1677
331 5.8		scscf002.lmera.er		606 cmd=Multimedia-Auth Answer(303) flags=-P appl=3GPP Cx(16777
		a.ericicscf001.lmera.er	icSIP	916 Status: 401 Unauthorized
333 5.8		a.eric10.196.7.41	SIP	769 Status: 401 Unauthorized
334 5.8		10.248.0.8	SIP	729 Status: 401 Unauthorized
358 6.13	2634 10.248.0.8	10.196.29.129	STP	1334 Request: REGISTER sin:ims.mnc080.mcc262.3annnetwork.ora (1 h
<				
∎ Frame 228	: 206 bytes on wire	(1648 bits), 206 bytes	captured (16	48 bits)
				e8), Dst: Ericsson_e4:a4:2b (3c:19:7d:e4:a4:2b)

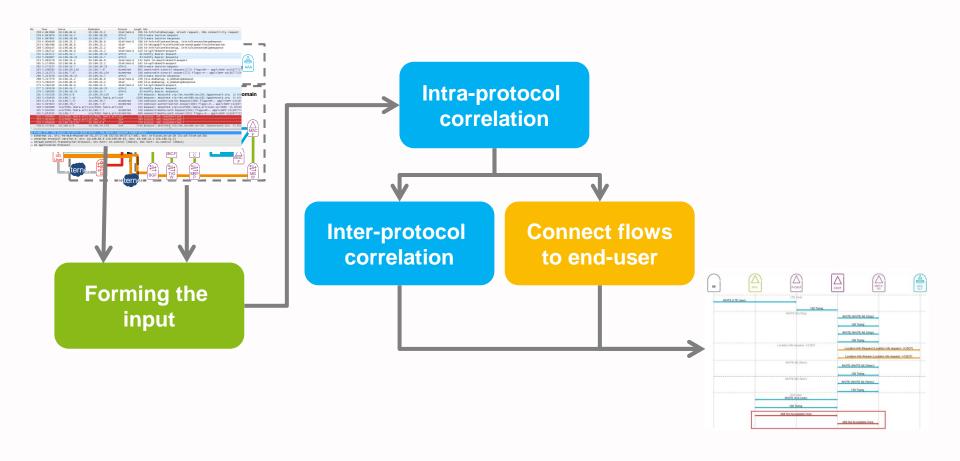
- FIND is the keyword
- Incoming data
 - No structure
 - Flows can overlap
- Troubleshooting
 - Time consuming
 - Prone to errors



S1 Application Protocol



CORRELATION – STRUCTURING THE DATA


- Correlated data
 - Assembled flows
 - With grouping and filtering options
 - Placed in the network

CORRELATION – SIMPLIFIED WORKFLOW

User Conference on

Advanced Automated Testing

BEYOND TESTING CORRELATION – BIG DATA PROCESSING

Forming the input

Intra-protocol correlation

Inter-protocol correlation

Connect flows to end-user

- The tasks can be a separate services
 - Services can run parallel or pipelined parallel
 - Multiple instances can be started

Real-time processing is achievable

User Conference on

- Micro-batch processing
 - Same algorithm for offline and online processing

"Information must be correlated"

BEYOND TESTING BIG DATA FRAMEWORKS – WHAT DO WE USE?

- Own platform
 - Helps to develop, test, maintain applications using Big Data technologies
 - Gathers open source frameworks

- Used frameworks
 - Processing: Hadoop MapReduce, Apache Storm, Apache Spark
 - Messaging: ZeroMQ, Apache Kafka
 - Misc.: Hadoop HDFS, Apache HBase, Apache Phoenix

EXAMPLE

Advanced Automated Testing

TAKEAWAY

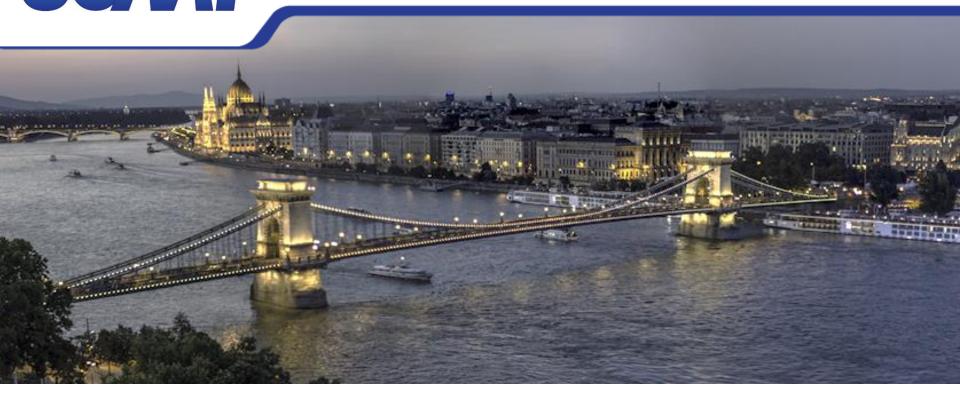
Focus on end-to-end system behavior and drill down to the details

Automation of data collection, analysis and troubleshooting

Multi-stage correlation to parallelly process diverse data

Common solution for offline and online analysis

User Conference on


Advanced Automated Testing

15

QUESTIONS & ANSWER

Thank you for your attention.

COME AND SEE OUR DEMO

