
Sophia Antipolis, French Riviera
20-22 October

2015

Showing QuickCheck results to stakeholders
Presented by Laura M. Castro

© All rights reserved

What is QuickCheck?

2

• Property-based testing tool
• Powerful upgrade from xUnit tools
• Define properties and models rather than specific test cases

properties are well-suited for library-like software
stateful models allow to describe SUT behaviour as black-box

• Runs many tests, executes and evaluates them
• Presents minimised counterexample:

if property is found not to hold or
SUT exhibits behaviour that diverges from described by model

© All rights reserved

What is QuickCheck?

3

• Property-based testing tool
• Powerful upgrade from xUnit tools
• Define properties and models rather than specific test cases

properties are well-suited for library-like software
stateful models allow to describe SUT behaviour as black-box

• Runs many tests, executes and evaluates them
• Presents minimised counterexample:

if property is found not to hold or
SUT exhibits behaviour that diverges from described by model

© All rights reserved

Test more!!Test more!!

What is the challenge in QuickCheck?

4

• Poses a learning curve to developers/testers
● PBT artifacts (properties and models) are more abstract than

specific test cases, thus more difficult to write
• It is equally challenging to other stakeholders

● PBT artifacts are not straightforward to understand
● Not only test results, but also what is being tested may be

harder to grasp
● Presenting statistics is slightly misleading

you do not run the same tests each time

© All rights reserved

What is the challenge in QuickCheck?

5

• Poses a learning curve to developers/testers
● PBT artifacts (properties and models) are more abstract than

specific test cases, thus more difficult to write
• It is equally challenging to other stakeholders

● PBT artifacts are not straightforward to understand
● Not only test results, but also what is being tested may be

harder to grasp
● Presenting statistics is slightly misleading

you do not run the same tests each time

© All rights reserved

Test more!!Help!!

Addressing the challenge: PROWESS

6

• EU FP7 ICT project (2012-2015)
• Total budget 4.4M€ (3.3M€ EU contribution)
• 9 partners (3 SMEs, 1 research centre, 5 universities), 3

countries (Spain, Sweden, United Kingdom)
• Specific work package devoted to dealing with the complexity

of creating and understanding PBT artifacts, featuring:
● Alternative representation of test results
● Alternative edition (graphical) of test models
● Alternative representation (using semi-natural language) of test artifacts

© All rights reserved

PROWESS industrial pilot: VoDKATV

7 © All rights reserved

moreBugs

8

• Goal: reveal as many bugs present in SUT as possible
• Why: the random component of PBT may hit the same

bug once and again when there are others yet
unrevealed; bug reports in consultancy-like work are
expected to inform of as many defects as possible

• How: test execution is automatically steered, so that
instead of stopping on the first specification violation,
new tests are executed that do not include the
interactions that already failed in a previous run

© All rights reserved

moreBugs

9

Normal QC output:
..Failed! After 3 tests.

erlang:whereis(b) > undefined

erlang:whereis(c) > undefined

reg_eqc:spawn() > <0.291.0>

reg_eqc:spawn() > <0.292.0>

erlang:whereis(b) > undefined

erlang:register(a, <0.292.0>) > true

reg_eqc:spawn() > <0.293.0>

erlang:register(b, <0.292.0>) > !!! {exception, {'EXIT', {badarg, ...}}}

Shrinking xxxxx.xx...xx.xx(5 times)

reg_eqc:spawn() > <0.319.0>

erlang:register(a, <0.319.0>) > true

erlang:register(a, <0.319.0>) > !!! {exception, {'EXIT', {badarg, ...}}}

© All rights reserved

moreBugs

10

Normal QC output with moreBugs:
Bug 1:

 V1 = reg_eqc:spawn(),
 erlang:register(b, V1) | V3 = reg_eqc:spawn(),

 erlang:register(b, V3)

Bug 2:
 V1 = reg_eqc:spawn(),

 erlang:register(a, V1),

 erlang:unregister(a),
 erlang:unregister(a)

Bug 3:

 V1 = reg_eqc:spawn(),
 erlang:register(a, V1) | erlang:register(b, V1)

© All rights reserved

Graphical edition

11

• Goal: make QC test models easier to manipulate
• Why: QC stateful models require the developer to

implement a number of callbacks (pre/post conditions,
test state update, etc.) which is challenging for new
adopters, especially if not familiar with Erlang

• How: mouse-based manipulation of QC models using the
browser, supporting the most important edition
operations (state & state transition addition/removal,
transition weight edition, failure visualization, etc.)

© All rights reserved

Graphical edition

12

Sample QC stateful model:
record(state,{started}).
initial_state() > #state{started = false}.

start_pre(S) > not S#state.started.
start_args(_S) > [].

start_next(S,_,[]) > S#state{started = true}.
stop_pre(S) > S#state.started.

stop_args(_S) > [].
stop_next(S,_,[]) > S#state{started = false}.

lock_pre(S) > S#state.started andalso not S#state.locked.

lock_args_S) > [].
lock_next(S,_,[]) > S#state{locked=true}.

unlock_pre(S) > S#state.started andalso S#state.locked.
unlock_args(_S) > [].

unlock_next(S,_,[]) > S#state{locked=false}.

© All rights reserved

Graphical edition

13

Sample editable
QC stateful
model:

© All rights reserved

readSpec

14

• Goal: make PBT artifacts readable for stakeholders
• Why: stakeholders need to assess what is being tested,

but cannot read PBT artifacts and/or understand what
they mean in terms of what is being tested with them

• How: takes PBT artifacts as input, produces semi-
natural English text as output

● For properties, readSpec produces Cucumber-compliant text
● For stateful models, readSpec produces own text explanation

© All rights reserved

readSpec

15

Sample input:
 prop_simple() >

 ?FORALL(I, int(),

 ?FORALL(L, list(int()),

 not lists:member(I, lists:delete(I, L)))).

Sample output:
 GIVEN I have the integer 6

 AND I have the list [1, 2, 13, 0, 5]

 THEN lists:member(6, lists:delete(6, [1,2,13,0,5]))

© All rights reserved

readSpec

16

Sample input:
 prop_simple() >

 ?FORALL(I, int(),

 ?FORALL(L, list(int()),

 not lists:member(I, lists:delete(I, L)))).

Sample output:
 GIVEN I have the integer 6

 AND I have the list [1, 2, 13, 0, 5]

 THEN lists:member(6, lists:delete(6, [1,2,13,0,5]))

© All rights reserved

validation
showed most value

when complexity
increases

To take home

17

• Property-based testing keeps proving itself a very valuable
strategy in terms of efficiency and effectiveness

• Property-based testing imposes a steeper learning curve not
only for developers, but for all stakeholders

• PROWESS project has studied several angles to these issues,
and produced tools that can help

● We have seen here three of them, but check out our project website
www.prowessproject.eu and our project GitHub page
github.com/prowessproject for more

● … and a few other talks during this conference!

© All rights reserved

http://www.prowessproject.eu/
https://github.com/prowessproject

18 © All rights reserved

Thanks!

Questions?

Contact me: lcastro@udc.es

mailto:lcastro@udc.es

