
Sophia Antipolis, French Riviera
20-22 October 2015

Fuzz Testing of Web Browsers
Presented by Renata Hodovan

© All rights reserved

Outline

2

• Principles of random testing
• Pros & Cons of fuzzing
• How to fuzz a browser?
• Evaluation of a real life framework

© All rights reserved

Principles of Fuzz Testing

3

• Idea: Stress testing the target with deformed inputs
• Expected bugs (primarily):

Implementation mistakes
Non-semantic issues

• Automated testing

© All rights reserved

Possible Issue Types

4

• Stability issues
Crashes
Memory corruptions
Hangs

• Semantic issues
Assertion failures
Output mismatch with an oracle

© All rights reserved

Pros & Cons

5

• Pros
It works! :-)
Fast and cheap
No need for source code
Portable

• Cons
Smart fuzzing can be challenging

© All rights reserved

How to Fuzz a Browser?

© All rights reserved

What do You Need ?

7

• Evil test generator algorithm
• Transfer mechanism
• Monitoring framework

© All rights reserved

Browser Fuzzing Framework

8 © All rights reserved

Test

Test

Test

Variations for Generators

9

• Random noise
• Mutation based
• Generation based
• Combination of the above

© All rights reserved

First Steps ...

10

• Tests with random character sequences
• Pros:

Fast and easy to implement

• Cons:
Mostly fails on the first checks
Not able to find complex errors

• Found bug in WebKit (Apple Safari)
ᠶʐ

© All rights reserved

Mutation Based Approaches

11

• Idea: the most error-prone tests are the almost good ones
• Let's mess up existing tests!
• Pros:

Still easy to implement
Much more effective than purely
random

• Cons:
The variety of possible tests
depends on the initial test set

© All rights reserved

Mutation Based Approaches

12

• Ingredients:

Existing test cases
Parser for the tests
Test domain (in)competence

© All rights reserved

Mutation Based Approaches

13

• Replace tokens with random contents:

<applet code="good.class"></applet>

<applet code="foo.bar"></applet>

(Google Chrome issue)

© All rights reserved

Generation Based Approach

14

• Ingredients:

Model/grammar describing the input format
E.g., in BNF format

Automatism that processes the description and generates a
fuzzer
ANTLR

© All rights reserved

Generation Based Approach

15 © All rights reserved

ANTLR
JAVA

Fuzzer
grammar

Input
grammar

Generation Based Approach

16

• Pros:
Not bound to any input test set
Easier to extend
Increased coverage

• Cons:
Needs much more preliminary work

© All rights reserved

How to Obtain the Input Grammar?

17

• Make your hands dirty! Write it yourself!
• Extract it from standards

E.g., from XSD or IDL definitions
They can be processed automatically

• Extract from existing test cases
Uncover undocumented features

• Combine all of them

© All rights reserved

Further Challenges

18

• Grammars can only describe syntactic requirements
but not semantic ones. E.g.,:

Variable matching
Using functions with “correct” parameter list
Building valid relations between XML nodes

• Solution:
Adding semantic information manually

E.g., using symbol tables

© All rights reserved

How to Obtain the Input Grammar?

19

• Make your hands dirty! Write it yourself!
• Extract it from standards

E.g., from XSD or IDL definitions
They can be processed automatically

• Extract from existing test cases
Uncover undocumented features

• Combine all of them

© All rights reserved

Generation Based Approach

20

function f_0(){

 for(var v_0 in [10]){

 try {

 for(var v_1 in [10])

 return;

 } finally {}

 }

 }

 for(var v_2 in f_0()) {}

(JavaScriptCore issue)

© All rights reserved

Fuzzinator

© All rights reserved

Features

22

• Supported languages
HTML
SVG
MathML
CSS
JavaScript
Combinations of the above

© All rights reserved

• Applied techniques
Mutation
Generation

• Grammar sources
Hand-written
Extracted from XSD, IDL, web
standards

• Advanced features
ID matching, self adapting
weights

Results in Numbers

23 © All rights reserved

Engine Number of bugs

Google Chrome 274

Apple Safari 257

Jerryscript (JS engine) 96

Questions?

24 © All rights reserved

	TITLE - TITLE - TITLE
	CONTENT SLIDE TITLE
	Dia 3
	Dia 4
	Dia 5
	DIVIDER TITLE
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24

