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Outline
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• Principles of random testing
• Pros & Cons of fuzzing
• How to fuzz a browser?
• Evaluation of a real life framework
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Principles of Fuzz Testing
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• Idea: Stress testing the target with deformed inputs
• Expected bugs (primarily): 

Implementation mistakes
Non-semantic issues

• Automated testing
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Possible Issue Types
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• Stability issues
Crashes
Memory corruptions
Hangs

• Semantic issues
Assertion failures
Output mismatch with an oracle

© All rights reserved



Pros & Cons
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• Pros
It works! :-)
Fast and cheap
No need for source code
Portable

• Cons
Smart fuzzing can be challenging
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How to Fuzz a Browser?
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What do You Need ?
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• Evil test generator algorithm
• Transfer mechanism
• Monitoring framework
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Browser Fuzzing Framework
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Test

Test

Test



Variations for Generators
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• Random noise
• Mutation based
• Generation based
• Combination of the above
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First Steps ...
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• Tests with random character sequences
• Pros:

Fast and easy to implement

• Cons:
Mostly fails on the first checks
Not able to find complex errors

• Found bug in WebKit (Apple Safari)
&#6198&#656
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Mutation Based Approaches
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• Idea: the most error-prone tests are the almost good ones
• Let's mess up existing tests!
• Pros:

Still easy to implement
Much more effective than purely 
random

• Cons:
The variety of possible tests 
depends on the initial test set
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Mutation Based Approaches
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• Ingredients:

Existing test cases
Parser for the tests
Test domain (in)competence
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Mutation Based Approaches
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• Replace tokens with random contents:

<applet code="good.class"></applet>

<applet code="foo.bar"></applet>

(Google Chrome issue)
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Generation Based Approach
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• Ingredients:

Model/grammar describing the input format
E.g., in BNF format

Automatism that processes the description and generates a 
fuzzer
ANTLR
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Generation Based Approach
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ANTLR
JAVA

Fuzzer
grammar

Input
grammar



Generation Based Approach
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• Pros:
Not bound to any input test set
Easier to extend
Increased coverage

• Cons:
Needs much more preliminary work
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How to Obtain the Input Grammar?
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• Make your hands dirty! Write it yourself!
• Extract it from standards

E.g., from XSD or IDL definitions
They can be processed automatically

• Extract from existing test cases
Uncover undocumented features

• Combine all of them
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Further Challenges
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• Grammars can only describe syntactic requirements 
but not semantic ones. E.g.,:

Variable matching
Using functions with “correct” parameter list
Building valid relations between XML nodes

• Solution:
Adding semantic information manually

E.g., using symbol tables

© All rights reserved



How to Obtain the Input Grammar?
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• Make your hands dirty! Write it yourself!
• Extract it from standards

E.g., from XSD or IDL definitions
They can be processed automatically

• Extract from existing test cases
Uncover undocumented features

• Combine all of them
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Generation Based Approach
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function f_0(){ 

    for(var v_0 in [10]){

        try {

            for(var v_1 in [10])

                return;

        } finally {}

    }

 }

 for(var v_2 in f_0()) {}

(JavaScriptCore issue)
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Fuzzinator
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Features
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• Supported languages
HTML
SVG
MathML
CSS
JavaScript
Combinations of the above
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• Applied techniques
Mutation
Generation

• Grammar sources
Hand-written
Extracted from XSD, IDL, web 
standards

• Advanced features
ID matching, self adapting 
weights



Results in Numbers
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Engine Number of bugs

Google Chrome 274

Apple Safari 257

Jerryscript (JS engine) 96



Questions?
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