

USING FAULTS FOR EFFICIENT MBT FOR A COMPLEX RAILWAY APPLICATION

Presented by Rupert Schlick

- Application Purpose:
 - Ensure safe train movement
 - Prevent collisions and derailing of rolling stock
- Experimental Evaluation
 - used a functional subset of interlocking logic following Austrian railway operation rules
 - THALES product LockTrac 6131 Elektra, approx. 250 installations, 4 countries

- Complex Application Domain
 - 30 years in service
 - country specific requirement variants
 - multiple HW and OS platforms

- Highly regulated domain
 - CENELEC standards, e.g EN50128 (software safety)
 - require controllable, documented test and verification process
 - traceability, certification of SW increments

Railway Interlocking - Technical Challenges for Testing

Example Rule Requirement:

of moving command (both if it is a manual command and if it is an automatically generated command), if the switch holds a lock or any interlock or an interlock request.

Complexity

- 71 rule requirements in simplified eval. example
- example test station has:
 - 34 points, 56 track relais,22 signals, 145 train routes

Principle of Model Based Testing

- Test Model:
 - sequences/scenarios
 - state machines
 - formal requirements
 - usage probabilities ...
- Test Goal:
 - target state (condition)
 - number of tests (random walks)
 - coverage
 - requirement
 - model structure
 - user inputs ..
- Test oracle:
 - no crash, no deadlock
 - correct behaviour (subset)
 - invariants...

Principle of fault based MBT

- behaviour model
- mutant: model with a small, syntactically correct change
- used for both:
 - test quality analysis
 - as a test goal (fault coverage)

Comparison with other coverage driven approaches

- structural coverage alone in state machines (e.g. transitions) is not enough -> decision, data flow
- data flow coverage not easily done in concurrent models with instances
- observability not inherent in classic coverage
- safety standards request certain coverage criteria for code

Combining Strategies

The Test Case Generator: MoMuT

- TCG engine
 - Input from different modelling tools
- Papyrus UML language front-end used in evaluation
 - Generation from UML state machines
- Other modelling languages planned:
 - DSLs from industrial users
 - Timed Automata
 - Event-B

Behaviour Model

- 32 classes (4 environment, 18 field element, 10 trainroute logic)
- 18 active classes (state machines)

Example Stations + Model Size

Station	MMS	LBT
Characterisation	A small meeting station	Layout used for train route tests
# track relays	4	56
# signals	8	22
# points	2	34
# train routes	10	145
# instances	125	2847
# controllable inputs	172	1652
State size / kB	22,3	> 184,9

Evaluation of generated tests

- UML mutation coverage of:
 - original tests from production use
 - random tests generated from model

- evaluation of test coverage
- option to prioritize tests
- derive traces from test to requirement

Performance/Applicability

Generates tests with overall 450 steps for MMS in 23 minutes, covering 680 of 2044 mutants

- Abstract tests including oracle and coverage information
- Not cleaned up for unreachable mutants

Use of enumerative exploration

- Just-In-Time Compilation based on LLVM 3.6
- Partial Order Reduction
- Partial Orders Encoded in Test Cases
- Exploring mutants only for needed steps (<5 steps for 99 %)
- Search based exploration driven by mutants (LBT + 10 % cov.)

Conclusion – How are the challenges addressed?

- reduced effort
 - automated test development
 - efficient tests -> affordable test run time
 - less maintenance effort
- sufficient test quality
 - better suited coverage criterion (for generation)
- certification of increments
 - only needed changes to test suite (improvement support)
- complexity can be handled
 - automated generation of tests in reasonable time

Acknowledgements

- Partners
 - Thales Austria GmbH

Graz University of Technology
 Institute for Software Technology

• Funding Agencies:

• Projects:

Contacts

www.MoMuT.org

Rupert Schlick,

Willibald Krenn

Department Digital Safety and Security
Business Unit Safe and Autonomous Systems

AIT Austrian Institute of Technology GmbH

Donau-City-Straße 1 | 1220 Vienna | Austria http://www.ait.ac.at | F +43(0) 50550-4150

<u>rupert.schlick@ait.ac.at</u> | T +43(0) 50550-4124 <u>willibald.krenn@ait.ac.at</u> | T +43(0) 50550-4109

Werner Schütz

Head Methods and Tools

Thales Austria GmbH

Handelskai 92 | 1200 Vienna | Austria http://www.thalesgroup.com/austria

werner.schuetz@thalesgroup.com

T +43(0)1-27711-3115

User Conference

on Advanced Automated Testing

