
Raspberry Pi Single-Board Computers for Testing: 

How Berry Traces have Changed our Lives 

Dirk Lüdtke, Andreas Lauterbach,  

Fabian Staudinger 



Background 

 Product 

 Software for in-vehicle Infotainment Systems 

 navigation, audio, video, online services, speech dialog system 

 Premium systems (asia market) 

 

 Tasks 

 Software integration and smoke testing 

 Recording of traces (baseline for later analysis) 

 

 Sponsor 

 AW Technical Center Europe (Munich) 

 Subsidiary of Aisin AW (Japanese automotive supplier) 



Introduction 

 Quantity of releases 

 4 regions, 5 car manufacturers, different models, overlapping SOPs 

 up to 45 Software releases per week 

 

 Automation of software build and assembly 

 manual integration 8 hours -> 2 hours (human effort) 

 difficult to reduce further 

 

 Automation of testing 

 manual testing takes about 1 hour 

 can be reduced by factor 4 

 functionality can be extended (more traces, more self tests) 



Manual testing 

Demonstrator 

Serial 
Connections  

    Telnet 
  Connection 
(optional) 

Display 

Key Panel 

Ignition 

Main Unit 
(SD-card slots) 

Power Supply 



Approach A 

 Advantages 

 Already in use 

 Full range of features (frame-

grabbing, key-panel-simulation) 

 Disadvantages 

 PXI-Hardware: > 20,000 EUR 

 Still requires adaptation effort 

 Outage risk 

Centralized  
test hardware 

Navigation / multimedia units 

Ethernet 

-UART 
-CAN 
-Ethernet 
-USB 

… 

… 



Approach B 

 Advantages 

 Hardware: ~ 350 EUR per 
demonstrator 

 Distributed system 

 Scalability 

 Disadvantages 

 Development: ~ 5,000 EUR 

 Limited features 

 

Ethernet 

      …                          … 

… 

-UART 
-Ethernet 

-USB 

Navigation / multimedia units 



Implementation 1 

 Python 

 pyserial 

 pysvn 

 blends into existing system (mostly in Python) 

 in-house logging modules 

 in-house SVN modules 

 

 Configuration 

 Stores settings for various demonstrators 

Serial-USB adapters 

Preferences of the developers  

 SVN structure 



Implementation 2 

 Classes for logical/physical structures 

 Ignition 

 Power Supply 

 Main Unit 

 SVN 

 

 Main test sequence 

 Connection tests 

 On/Off cycle (Main Unit) 

 Traces / several logs / SVN / … 

 

 Multithreaded tracing and logging 



Feature summary 

 Low power consumption 

 ~ 30 kWh / year 

 

 Distributed system 

 No single point of failure 

 

 Allows permanent logging 

 E.g. during updates, non-testing activities 

 

 Link to SVN 

 Get SW update from SVN and install update 

 Do test (semi-manually) 

 Put test results and traces to SVN 



Outlook 

 Additional capabilities 

 CAN/LIN/UART 

Simulate key panel / touch pad inputs 

 speed signals 

 Image recognition 

 LVDS screen grabber 

 internal screenshots 

 Audio I/O 

 

 New applications 

 automated updates (e.g. new map data) 

 software development 

 main unit configuration utilities 


