2nd

User Conference on /// » \\\
e e ETS((—)

World Class Standards
September 16-18 2014, Munich, Germany

Model-Based Security Testing
with Test Patterns

Julien BOTELLA (Smartesting)

http://www.rasenproject.eu/
Jurgen GROSSMANN (FOKUS)

Bruno LEGEARD (Smartesting) @ A\ S ‘ E | N ’ Compositional Risk

Fabien PEUREUX (Smartesting) DD ?Sstsm?r[llt atnd ?(egusntyt
Martin SCHNEIDER (FOKUS) .DD esting of Networked Systems
Fredrik SEEHUSEN (SINTEF)

=W e
= .
Z Fraunhofer SINTEF smartesting
FO K U S Optimize your Test Center SEVENTH FRAMEEWORK

PROGRAMME

nd
eeeeeeeeeeeeeeee .
m Aeancad Atomated Testing September 16-18 2014, Munich, Germany

Agenda

* Context, motivation and objectives
* Approach for Risk-Based Security Testing
* |llustration of the end-to-end process

* Conclusion and future work

@A { S ’ E | N ’ Model-Based Security Testing with Test Patterns 2

» FP7 RASEN project (2012-2015) [RIAlS]

Compositional Risk Assessment and Security Testing of Networked Systems

September 16-18 2014, Munich, Germany

Context

~

\—

SINTEF ~ Fraunhofer

G software

N\

FOKUS

I nfOWO rl d @ﬁ;} UiO ¢ Universitetet i Oslo

CONNECTING HEALTHCARE

[VR}/

~

_/

EEEEEEEEEEEEEEEE
PROX

— Strengthen European organisations’ ability to conduct security
assessment of large scale networked systems

* taking into account the context in which the system is used, such as
liability, legal, organisational and technical issues,

e through the combination of compliance management security risk
assessment and security testing.

[RJA[S

E[N]

Model-Based Security Testing with Test Patterns

User Conference on

September 16-18 2014, Munich, Germany

Motivation of the RASEN project

Security risk assessment

Transformations

/'

Security risk
assessment

\
Security test case
derivation

aggregation

Security test result —

Security testing

/'

[R]A

SIE[N]

Model-Based Security Testing with Test Patterns

\

Security testing

N

eeeeeee

September 16-18 2014, Munich, Germany

Contents of the presentation

e Security and risk-based testing approach to guide the security testing
using a systematic derivation of test cases from risk assessment results.

Security risk assessment

('

Transformations

(

N

Security testing

('

.
—

derivation

Security test case B

Security risk
assessment

[RJA[S

E[N]

_

/

Security test result

aggregation

<«

Security testing

Model-Based Security Testing with Test Patterns

\

\

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Security testing: state of the practice

Manual
Techniques

Automated
Techniques

[RJA[S|EIN]

Static Techniques Dynamic Techniques

Dynamic
Application
Security
Testing
(DAST)

Model-Based Security Testing with Test Patterns

Intrusive proxies
(Burp suite,
Webscarab, ...)

Vulnerability
Scanners,
Fuzzing tools, ...

2nd

m oo September 16-18 2014, Munich, Germany
SAST vs DAST —Top 25/ 2011

_ y Resource Managemen
ure Interaction Between Componehs

Download of
code with no
check

Unrestricted Open Untrusted Dangerous Format Strin SAST
upload Redirect inclusion function 8

SQL Command Buffer Path
Injection Injection Overflow Traversal

Integer
Porous Defenses Overflow

Missing Missing r.>vd coded Missing
Authentication Authoriz~con creactials encryption

Untrusted inputs Incorrect
. - U iecessary Incorrect S
insecurity permission

r: Srivileges authorization -
decision assignment

- hash with no salt
atv ™ s

No restriction of - 0
. . Use of one way
Broken crypto «'thorizatior. =

@ A} S ’ E I N 1 Model-Based Security Testing with Test Patterns 7

Objectives of the testing approach

* To provide a systematic guidance for DAST
security testing techniques from risk assessment

e To automate test case derivation and execution
using model-based security testing techniques

* To support compositional analysis to manage
large scale networked system in complex
environments

[R]A[S]E]N]

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Risk-Based Security Testing process

Risk Assessment Test Models Test Generation Test Execution

Requirements

Jest Pattern
CGatalogue

Risk
model

SINTEF

Behavioral and
Environmental
Test Model

Selectedilest
PurposesiWith
Associated/Risk

Srércruirity’ Test
Directives
and Strategies

1. From Models &
Security Test
Patterns

Applying
Behavioral
Fuzzing

=

[S - - - - - - -
~Z Fraunhofer : Z Fraunhofer : Z Fraunhofer : Z Fraunhofer
FOKUS smartesting rokus || Smartesting rokus || Smartesting FOKUS

Tests (UTP)

Adaptation
Layer +
Fuzzino

[RJA[S|EIN]

Model-Based Security Testing with Test Patterns

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

RASEN toolchain overview

Strategies

model Patterns with
associated risk

t Behavioral and

: environmental
lest Pattern Test Model
Gatalogue

Requirements

[RJA[S|EIN]

Security Test

s ‘Selected Test

Certifylt

Accelerate # Testing

jestiPurpose

CGatalogue

Security test cases

including
fuzzing directives

Model-Based Security Testing with Test Patterns

JUnit test scripts

including
fuzzing directives

¥ ruzzino

Euzzing
Strategies

Application
TN

10

2nd

w by ek S September 16-18 2014, Munich, Germany
Use case: InfoWorld MediPedia

Medipedia is a web service that:

* allows patients to collect and organize all medical information, from
multiple healthcare providers in a single health record,

e provides both public and secured username and password based access
(public and secured information managing patient medical records).

e 006 Medipedia

Incearca si >> Medipedia Mobile
Autentificare (]

O Tine ma mine CONNECTING HEALTHCARE

Ultimele STIRI
18 octombrie 2013

\\ “MediPedia

The Medical Encyclopedia

n Cnitale/Clinici

@ A ‘ S { E | N ’ Model-Based Security Testing with Test Patterns 11

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

1. Risk assessment inputs

Risk Assessment Test Models Test Generation Test Execution

Requirements

Jest Pattern
CGatalogue

SINTEF

Behavioral and
Environmental
Test Model

Selectedilest
PurposesiWith
Associated/Risk

Seddrity Test
Directives
and Strategies

1. From Models &
Security Test
Patterns

Applying
Behavioral
Fuzzing

=

- S - - - - - - -
~Z Fraunhofer : Z Fraunhofer : Z Fraunhofer : Z Fraunhofer
FOKUS smartesting rokus || Smartesting Fokus || Smartesting FOKUS

Tests (UTP)

Adaptation
Layer +
Fuzzino

[RJA[S|EIN]

Model-Based Security Testing with Test Patterns

12

Risk identification and prioritization

* Using the CORAS approach to provide test case identification and
prioritization based on the risk analysis:
— Definition of selected test procedures from identified risk
— Prioritization of the test procedures regarding risk assessment results

CIA Impact: High,High,High

TI05: Read application data
0
iHigt

TI04: Modify application data
1

)

CWE-20: Im propfer Input Validation

AN

CAPEC-66F: SQL Injection
successful

0

i
Very little; High: 1
i

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ("SQL Injection’)

08: Execute unauthorized cod
or commands

1]

Weakness prevalence: High
Attack Frequency: Often

Ease of detection: Easy
Attacker awareness: High
Likelihood of exploit: Very high

109: Gain privileges / assume
identity
0

@ A‘ S ’ E | N ’ Model-Based Security Testing with Test Patterns

n
User Conference on .
mr Aeancad Atomered Tsting September 16-18 2014, Munich, Germany

13

2nd

UCAAT

File Edit Diagram

B &

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Risk model in CORAS tool

Window Help

%] v 51 v %5 Tahoma

VB I|A~&~.sv—-|@|Bi-o8-ter| 8P| KO -|[1%

vi9

v

| [@) *SQL Injection 53 |
q 55 Palette

(= Connections
A Harm
A Impacts
A Initiates
A Leads To
/7 Treats

L]

(== Basic Coras
7% Threat Scenario
& Direct Asset

% Indirect Asset

* Human Threat
Accidental

€ Human Threat
Deliberate

0

[Non-Human
Threat

A\ Risk

™ Treatment
Scenario

¢ Unwanted
Incident

6 .

Meam-

/ VulnerabilityTa...

Hackar

<

Cla Impact: High High High

TIC: Read application data
0

CWE-23 Impropar Input Validation

TIO4 Modify application data
Vary littls; High: 1 CAPEC-EEF: SOL Injaction 0
CAPEC-€61: SQL Injaction i

[Cartain] e

0

CWE-8%: Impropar Nautralization of Spacial Elemants usad in an SQL Command (SQL Injsction’)

08: Exscuts unauthorized cods
or commands

Visaknass pravalsnca: High
&ttack Fraguancy: Oftan

Eass of dataction: Easy
Attacker awarsnsss: High
Likslihood of exploit: Vary high

02 Gain privilsgas / assume
idantity

= Properties 2 | [Type Viewl] TestViewI

Prangerties are nnt avallahle

B2 Outline 53 & B

| type filter text ‘

4 <4 Project risk_identification)
> 4 Threat Diagram CAPEC-66: SQL Injection
> 4 Threat Diagram CAPEC-88: OS Command Injection
> 4 Threat Diagram CAPEC-100: Overflow Buffers
> 4 Threat Diagram CAPEC-63: Simple Script Injection
> 4 Threat Diagram CAPEC-225: Exploitation of Authenticatic
i 4 Threat Diagram CAPEC-122: Exploitation of Authorizatior.
4 Threat Diagram CAPEC-70: Try Common (default) Usernc
i 4 Threat Diagram CAPEC-157: Sniffing Attacks
> 4 Threat Diagram CAPEC-232: Exploitation of Privilege/Tru:
» 4 Threat Diagram CAPEC-62: Cross Site Request Forgery (a.
> 4 Threat Diagram CAPEC-23: File System Function Injection
> 4 Threat Diagram CAPEC-184: Software Integrity Attacks
> 4 Threat Diagram CAPEC-1: Accessing Functionality Not Pr
4 Threat Diagram CAPEC-101: Server Side Include (SSI) Inje
> 4 Threat Diagram CAPEC-113: APl Abuse/Misuse v

Model-Based Security Testing with Test Patterns

14

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Link to Security Test Patterns

. . Pattern Name A meaningful name for the pattern, e.g. the name of the weakness.
* Security test patterns are typically J ? :
re | ated to VU I nera bl I |t Cata |0 ues CWE-ID(s) The IDs of a weakness from the Common Weakness Enumeration.
y g Weakness A high-level description of the weakness.
— MITRE CWE & CAPEC Description
Solution How the weakness could be revealed manually.

— OWASP Top 10

e Solution

— one or more test design technique
and corresponding strategies, test

. Effort The effort to generate and execute such test cases on a
effort and effectiveness scale with the values ‘low’, ‘medium’, and ‘high’-
Effectiveness How effective is the test design technique in finding

* Test Data

— instructions for crafting test data

— references to test data libraries or
generators

e Tools
— references tools that can be used to

generate and execute such test cases

[R]A[S]E|N]

Test Design
Technique

Test design technique that is able to find the weakness.

Test Strategies Test strategies specific for a certain test design
technique that shall be applied in order to generate test

cases for the weakness in question.

such a weakness (how many test cases are necessary
to find one weakness, how many weaknesses might be
missed).

Description of
Test Coverage
Items

Informal description of items to be covered by test cases created on basis of a
pattern.

Metrics

Discussion

Test Data

Appropriate test and coverage metrics. These will be developed in Task T4.3.
This field is omitted within this deliverable.

A short discussion on the pitfalls of applying the pattern and the potential
impact it has on test design in general and on other patterns applicable to that
same context in particular.

Actual or references to test data and test data generators.

Tools

References to tools appropriate for test case generation and execution.

Generalization of

References to other security test patterns that are specializing this pattern.

References

References to OWASP Top 10 weaknesses CWE descriptions, related
CAPEC attack patterns

Model-Based Security Testing with Test Patterns

15

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

2. Test model design

Risk Assessment Test Models Test Generation Test Execution

Jest Pattern
CGatalogue

SINTEF

Test Model

Selectedilest

PurposesiWith
Associated Risk

Test

Security
Directives
and Strategies

Security Test
Patterns

=

Applying
Behavioral
Fuzzing

Z Fraunhofer Z Fraunhofer Z Fraunhofer . ZiFraunhofer
norer smart est Ling Fokus || smar t est ling FOKUS 5”7,,9(??%(’,!79 FOKUS
Behavioral and
Requirements Environmental 1. From Models & Tests (UTP)

Adaptation

Layer +
Fuzzino

[RIA[S]E[N]

Model-Based Security Testing with Test Patterns

16

Test model and testing directives

* Testing artefacts are composed of:
— A functional and behavioral model of the application under test

— A set of test purposes, selected from risk assessment model
(identification phase), to drive the test generation

— The prioritization of the risk assessment model to apply an
appropriate test coverage

 Smartesting Test Purpose Language is used to represent
Security Test Patterns into a machine-readable language:
— Designed for security means
— Textual language based on regular expressions

— Reasons in term of states to be reached and operations to be
called

[R]A[S]E]N]

2nd

User Conference on .
m Aeancad Atomered Tsting September 16-18 2014, Munich, Germany

Behavioral model design using DSML

e Behavioral modeling notation is based on UML metamodel:
— Class diagrams specify the static structure (points of control and observation)
— Object diagrams specify concrete business entities
— State diagrams graphically describe its behavioural characteristics

i PAGES
-] WebAppStructure Mavigable_through | page i WHOME™: INIT {
Jwas_p - all_page id : PAGE IDS ACTIONS {
0.1" - *1 Cgid: . "LOGIN" ("USERNAME" = "admin" => "ADMIN_LOGGED_IN", "PASSWORD" = "parola-10")
) 1 -> "ADMIN_LOGGED_IN",
1] 0.1 [0.1 “o1 b 1 "LOGIN" ("USERNAME" = "admin2" => "ADMIN_LOGGED_IN", "PASSWORD" = "parola-10")
- was_ca iy .1 -|page . -> "ADMIN_LOGGED_IN"
- was_| t pages output browses / “LOGIN" ("USERNAME" = “homed" => "DOCTOR_LOGGED_IN", “PASSWORD" = "parola-10")
-|current_page -> "DOCTOR_LOGGED_IN",
- was_cp provides “LOGIN" ("USERNAME" = “test_med2" => "DOCTOR_LOGGED_IN", "PASSWORD" = "parola-10")
. -> "DOCTOR_LOGGED_IN",
- all_actions "LOGIN" ("USERNAME" = "hopac" => "PATIENT_LOGGED_IN", "PASSWORD" = "parola-10")
has renders - -> "PATIENT_LOGGED_IN",
] Action "LOGIN" ("USERNAME" = "iliecatalin" => "PATIENT_LOGGED_IN", "PASSWORD" = "parola-10")
-> "PATIENT_LOGGED IN"
isDoing gd : ACTION IDS gAVIGATIONS {
thr "GOTO_REGISTER"
leaﬂ 1 - ongoingAction - action I 0.1) —> "REGISTER
———! }
] Threat all inputs| takes_as_input "ADMIN_LOGGED_IN" {
- all_inputs| NAVIGATIONS {
1 " "LOGOUT"
§2 checkxss () SE— | pata . -> "HOME"
& injectxss () - all_outputs=: jd : PARAMETER_IDS }
== = "DOCTOR_LOGGED_IN" {
ACTIONS {
"SELECT_PATIENT" ("NAME" = "ILIE" => "DOCTOR_PATIENT_PAGE", "FIRST_NAME" = "Catalin" => "DO(

"DOCTOR_PATIENT_PAGE")

Generic RAvIGATIONS ¢

“LogouT"

-> "DOCTOR_PATIENT_PAGE"

Model-Based Security Testing with Test Patterns 18

2nd

m Aeancad Aomated Tsting September 16-18 2014, Munich, Germany
State di f DSML

Hwis SNy - G
i| Lucida Grande s 8 D |—>v v Jv el |vBE, l ‘ H @v | 125% v
Q Quick Access I E‘i @.Modeling GSmartesting Certifylt ajjava [ﬁjkessource
[Project Explorer S@l B % |3 Y = O || RasenModel.emx ‘3 SUT_Statemachine 53 ’ a1
v =% Medipedia o R q
» (¥ Diagrams inital /Q DOCTOR_PATIENT_PAGE) I
v (22Models
RasenModel ¥
vEaClasses AGE LO
> (4 Associations
» (% Events p- ~N
» = Action G HOME
» HData
» = Page @
vEsut REGISTER_GOTO_LO... DOCTOR|LOGGED IN SELECT PATIENT D...
» E3 initPage HOME_LOGIN_DOCTOR_LOGGED_IN...
» 3 webAppStructure HOME_GOTO_REGISTER_REGIS... HOME_LOGIN_DOCTOR_LOGGED_IN._...
» § GOTO_LOGIN () HOMEZROGINIPATIENTELOGCED > CTOR_LOGGED_IN_LOGOUT_H...
» {3 GOTO_REGISTER () A G N OO e . HOM IN_ADMIN I
. ﬁgLocm 0 PATIENT LOGGED.IN LO.. NT:LGC(?&};N;BLC rd: HOME_LOCIN_ADMIN_LOGGED_IN_1[Cuar
» 3 LOGOUT ()
» % SELECT_PATIENT () _ HO) IOGGED_IN_2(Guard:
2 «setup» setup () 4 R e N\ - N -
% «teardown» teardown () () REGISTER ‘ () PATIENT_LOGGED_IN) ADMIN_LOGGED_IN () DOCTOR_LOGGED_IN
v (3SUT
& SUT_Statemachine
v (D Region
» COADMIN_LOGGED_IN Certifylt Console =l Pro i | i =l
perties Tag browser &3 Simulator
» GODOCTOR_LOGGED_IN = FTag G
» CODOCTOR_PATIENT_PAGE & Project 'Medipedia'
» @ HOME = = -
» G PATIENT_LOGGED_IN = 2 Filter Te|lad|eu
» GOREGISTER ¥ Tass
@ jinitial vt’é” tags
¥ (= VULNERABILITIES
» @ ADMIN_LOGGED_IN_LOGOUT_H v & Suite — § : _—
» @ DOCTOR_LOGGED_IN_LOGOUT () CategoryTestPurpose: CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
> @DOCTOR_LOGGED—IN_SELECT l; ¢ CategoryTestPurpose: CWE-20: Improper Input Validation
> @DOCTOR_PATIENT_PA_GE LOGE)I ¢ CategoryTestPurpose: CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Inje
» @ HOME G(-)TO REGI-STER I-QEGIST ¢ CategoryTestPurpose: CWE-697: Insufficient Comparison
»Q@ HOME_LOGIN—ADMIN LZ)GGED ¢ CategoryTestPurpose: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
»Q@ HOME_LOGIN_ADMIN_LOGGED_ ¢ CategoryTestPurpose: CWE-680: Integer Overflow to Buffer Overflow
»Q@ HOME_LOCIN-DOCTO-R LOCGE_[¢ CategoryTestPurpose: CWE-131: Incorrect Calculation of Buffer Size

@ A ‘ S] EJ N ’ Model-Based Security Testing with Test Patterns 19

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Test Purpose derivation

Pattern Name

SQL Injection

CWE-ID(s) CWE-89

Weakness The software constructs all or part of an SQL command using externally-

Description influenced input from an upstream component, but it does not neutralize or
incorrectly neutralizes special elements that could modify the intended SQL
command when it is sent to a downstream component.Error! Reference
source not found.

Solution Based on attack pattern CAPEC-66 Error! Reference source not found.

1. Use the application, client or web browser to inject SQL constructs
input through text fields or through HTTP GET parameters.

2. Use a possibly modified client application or web application debugging
tool such to submit SQL constructs for submitted values or to modify
HTTP POST parameters, hidden fields, non-freeform fields, etc.

3. Check for error messages, delays, disclosed values in the client
application and new/modified/deleted values in the database.

Test Design Data fuzzing

Technique Pattern-based testing

Test Strategies | SQL Injection

Effort Low to medium: can be highly automated using fuzzing

techniques or SQL injection dictionaries.

Effectiveness Medium Error! Reference source not found. to high,
depending on detection capabilities by access to the

affected database and to error messages

Description of
Test Coverage
Items

* Functionality that involves user input, e.g. dialogs, URLs of a web
application, that might be used in a database query

User input fields

SQL injection payloads

Names of tables and rows of the database schema

Values of existing records

Discussion

SQL injection is a task that could be rather trivial but also very complex.
This depends on several factors. For instance, error messages resulting
from incorrect SQL constructs caused by SQL injection are very helpful in
deciding whether SQL injection is generally possible.

In order to detect whether table data can be modified, it is helpful to have
knowledge of the database management system (different systems have
little differences in SQL syntax) and the database schema (modifying
existing records may require knowledge in which tables they are stored).

If SQL injection is possible, the extent of SQL injection can be assessed by
trying to modify existing data which requires knowledge of existing values in
the database tables. This enables to determine whether existing database
entries can be read, modified or deleted.

Test Data

* SQL Injection Cheat SheetError! Reference source not found.
¢ Fuzzing library FuzzinoError! Reference source not found.

Automatic derivation from Test Pattern to Test Purpose:

* Linked to model by using keywords
* Testing directives inherited from Test Patterns

) *RasenModelTestSuite 52 l .
Keywords Keyword definition
PAGES Type [List of Literals []
PARAMS
ACTIONS LIT_USERNAME or LIT_PASSWORD or LIT_NAME or LIT_FIRST_NAME or LIT_CNP

SQLI_VULN_PARAMETERS
PAGES_WITH_INOUTS

#[=

i Keyword defined correctly.

Test purposes

Test Purpose definition

SQLInjection

(3] =[]]

Tags @VUL:SQL:Injection (CWE-89)|

for_each instance $param from "Data.alllnstances()->select(d:Data|not(d.action.ocllsUndefined()))" on_instance sut,

use any_operation any_number_of_times to_reach
"SUT.alllnstances()->any(true).webAppStructure.ongoingAction.all_inputs->exists(d:Data|d=self)" on_instance $param then
use threat.injectSQLi(Sparam) then

use any_operation any_number_of_times to_reach

"self.webAppStructure.ongoingAction.ocllsUndefined()" on_instance sut then

use threat.checkBlindSQLi()

i Test Purpose defined correctly.

Overview Test fixtures Behavioral test objectives |Business scenarios | Test scenarios | Test Purposes

Testing Tools

¢ Fuzzing framework SulleyError! Reference source not found.
* SqglmapError! Reference source not found.

Generalization of

Error! Reference source not found.

[RIA[S]EIN]

Model-Based Security Testing with Test Patterns

20

2nd

m Kionced Ao e September 16-18 2014, Munich, Germany
[] []
3. Secu r|ty test generatlon

Risk Assessment Test Models Test Generation Test Execution

Z Fraunhofer e ZZiFraunhofer S ZZiFraunhofer e ZZiFraunhofer
P smartesting rokus || Smartesting rokus [il STAdrtesting FOKUS
Behavioral and
Requirements Environmental Tests (UTP)
bt ilealt 1. From .Models &
Security Test
Selectedilest -
T2a Zasiary purposes With FEISIETE Adiptatlo-l-n
CGatalogue Associated/Risk ay.er
. Fuzzino
T Applying
Securlty Test }
Directives Behavioral
and Strategies Fuzzing

SINTEF

@ A} S] E l N ’ Model-Based Security Testing with Test Patterns 21

Test generation strategies

Test cases are automatically generated using Smartesting
Certifylt by composing behavioral models and test purposes:

* For one Test Purpose, several (or many) test cases by:

* Applying usual Test Purpose coverage criteria
* Applying behavioral fuzzing strategy given from Test Patterns

* Traceability management from security requirements to
generated tests is build-in

Result: a suite of abstract security test cases

[RIA[S]EIN]

2nd

User Conference on)
m Advanced Automated Testing September 16-18 2014, Munich, Germany

Test generation results using Certifylt

i 8 OO0 Smartesting Certifylt 6.2.0 - RasenMedipedia [/Users/yakaldir/Desktop/Medipedia RASEN/workspaceRasen/RasenMedipedia/SCit]
Project Preferences Help
JEE | ®Runt eration » @ | [H | B Junit RASEN ~
" Stories | &) Tests ', & Requirements ', 5 festcetzl
teps
Q_ search stories [SQL QAavwz0e |
A s — | St\t s |B % Default model instance
i acts CIE || Lt |1 Initialized model instance
. |2 & Project 5 |& sut.setup()
A =] H)gzsenModer_resFSulte " (= sut. LOGIN(LIT_HOMED, LIT_PAROLA_10)
=N SQLinjection_10 v 1 was.hasOngoingAction() = false
£ <none> v 1 was.setOngoingAction(LIT_LOGIN)
A <none> — v 1 was.setCurrentPage(LIT_DOCTOR_LOGGED_IN)
- N SQUinjection_10 (bb-a1-03) &-was.finalizeAction()
=N SQLInjection_11 v 1 i -was.hasOngoingAction() = true
< <none> v 1 (= sut.SELECT_PATIENT(LIT_ILIE, LIT_CATALIN, LIT 1701102033100)
% <none:Qun.ecﬁ°n GRS v 1 was.hasOngoingAction() = fals Classes R StateMachine R InitialState - Pages g *sQLinj IE Diagram_sqlinj &3
=0 i - . was.setOngoingAction(LIT_SEL | | TesterTester | | sutMedipedia | [tweatThrear | | [5] webAppStructureWebAppStructure |
e % SQLInjection_7 v 1 was.setCurrentPage(LIT_DOCT|—
£ <none> v o1 & threat.injectSQLI(LIT_CNP_PARAM &
a <none> v 1 . *-was.hasOngoingAction() = tru E— ST o = S
. N SQLlInjection_7 (bb-72-03) =-was.finalizeAction() ’ % Tester:Tester (] sutMedipedia ‘ [threat Threa ‘ [webAppStrucsure: WebAppStructure
5 -
8% SQLInjection_8 v 1 -was.hasOngoingAction() = tru ‘ . ‘ |
< <none> v 1 threat.checkBlindSQLI(| : | |
(<none> v 1)
sut.teardown()
N SQLInjection_8 (bb-cb-03)
= %9 - sQLinjection_9 v 1 | | |
< <none> v 1 \ \ |
a <none> v 1
N sQLinjection_9 (bb-2c-03) | i | |
Point of view ‘ ‘ U |
AY
Tags of the suite reached by the test (bold f ‘ ‘ e |
vuL: ‘ | \
SQL:Injection
\ | \
- - ‘ 4: checkSQL ‘
E| Reached tags / Activated tags ; Paramet ‘ 3
" 1: Console| U

@ A ‘ S] EJ N ’ Model-Based Security Testing with Test Patterns 23

2nd

User Conference on .
m Aeancad Atomered Tsting September 16-18 2014, Munich, Germany

4. Test concretization for execution

Risk Assessment Test Models Test Generation Test Execution

[S - - - - - - -
~Z Fraunhofer : Z Fraunhofer : Z Fraunhofer : Z Fraunhofer
FOKUS smartesting rokus || Smartesting rokus || Smartesting FOKUS

Behavioral and
Requirements Environmental 1. From Models & Test (UTP)

Test Model)
Security Test
Selected Test Patterns]
lest Pattern Purposes\With Adiptatlo-l-n
CGatalogue Associated/Risk ay.er
. Fuzzino

— Applying

Security Test .
TP e Behavioral

and Strategies Fuzzing

SINTEF

@ A} S] E l N ’ Model-Based Security Testing with Test Patterns 24

Generation of executable test scripts

JUnit test scripts are automatically generated by Certifylt using an
adaptation layer concretizing abstract data into concrete values:

* For one abstract test case, several (or many) executable
test cases by:
* Using a set of selected test data given from Test Patterns
* Applying data fuzzing strategy given from Test Patterns

* Traceability management from security requirements to
executable tests is build-in

Result: a set of executable security test scripts

[R]A[S]E]N]

User Conference on

Advanced Automated Testing September 16-18 2014, Munich, Germany

Tests Execution in JUnit environment

e O 0O [5] SQLInjection_10__bb_al 03_.java - [Execution] - Execution - [~/Desktop/Medipedia RASEN /workspaceRasen /Execution]
3 Execution - [©] src - [£] Smartesting - [E] RasenMedipedia - [5] RasenModelTestSuite - (& Multistep_XSS_6__bb_91_03_ i SQLInjection_10__bb_al_03_ ¥

§ v [3Execution @RunWith(Parameterized.)
= » [.idea SQLInjection_10_ bb_al 03_ {
I v Olibs
v [fuzzino
> | | Fuzzino_0.3.0.0.jar AdapterImplementation

» [jdom2 .)
» [junit SQLInjection_10__bb_al_03_(String vector) {

Ju = AdapterImplementation(TypesAdapterImplementation())
» [dselenium-2.42.1 y = vector

» [resources }

v Csrc - .
. @Parameters
E1 de.fraunhofer.fokus.fuzzing Collection<Object[]> data() Injector.getParameters(VectorCreator.
v [E1Smartesting.RasenMedipedia
v [EJRasenModelTestSuite @Before
@ & SQLinjection_7__bb_72_03_
@ & SQLinjection_8_ bb_cb_03_ @Test
@ © SQLinjection_9_ bb_2c_03_ testSQLInjection_10__bb_al @3_() Exception {
@ SQLinjection_10_bb_a1_03 .RasenMode1ClassesSUTLOGIN(SUT. LOGIN_USERNAME. LOGIN_PASSWORD.)
. e e .RasenModelClassesWebAppStructurefinalizeAction(WebAppStructure.was)
G ° SQU"J““O"-Il—bb-"-oé- .RasenMode1ClassesSUTSELECT_PATIENT(SUT. SELECT_PATIENT_NAME. SELECT_PATIENT_FIRST
© & TypesAdapterimplementation .RasenModelClassesThreatinjectSQLi(Threat. Data.)
© © TypesDefinition .RasenModelClassesWebAppStructurefinalizeAction(WebAppStructure.
.RasenModelClassesThreatcheckBlindSQLi(Threat.)

B Project - % | %~ 1 @ sQLinjection_10__bb_al_03_java @ Adapterimplementation.java

String

s109(0.d uaney

Japuewwo) i

setUp() .RasenMode1ClassesSUTsetup(SUT.

p|ing juy &

@ © Adapterimplementation
© & Adapterinterface

® v @ sQlinjection_10_bb_al_03_
> (0]
> @
v @2
@ testSQLinjection_10__bb_al_03_[2] (Smartesting.RasenMedipedia.RasenModelTestSuite.SQLInjection_10__bb_al_03_)
o 3]
@ testSQLinjection_10__bb_al_03_[3]
DM
D5]
@6l
@® testSQLinjection_10__bb_al_03_[6]
» 7]

4:Run % 6: TODO -] Terminal Event Log

! 7:Structure

% 2: Favorites

(]

No occurrences found 111 LFs UTF-8+ &

B Model-Based Security Testing with Test Patterns

Conclusion and future work

Extended security test patterns for risk-based test case generation

Formalization of security test patterns into test purpose language to drive
the risk-based test generation

Risk-based testing approach combining RASEN partners risk assessment
and testing techniques:

— Risk identification and prioritization using CORAS method

— Import of risk assessment results from CORAS tool into Certifylt
— Test purpose generation method (Certfylt)

— Behavioral and data fuzzing strategies (Fuzzino)

Definition of more accurate testing strategies regarding risk prioritization
Extension of security test patterns and related test purposes
Improvements of the tool integration (especially Test Purpose / fuzzing)

Deeper use case evaluation, especially to validate the approach regarding
large scale systems

[R]A[S]E]N]

September 16-18 2014, Munich, Germany

Thank you for your attention !

[R]A[S]E|N]

Questions and Comments?

http://www.rasenproject.eu/

@A S E]N’ Compositional Risk

DD Assessment and Security
. DD Testing of Networked Systems

The project can also be followed on Twitter & LinkedIn:
@RASENProject
H#RASENProject
http://www.linkedin.com/groups?home=&gid=7429037

Model-Based Security Testing with Test Patterns 28

