

Cutting MBT Adoption Time with Domain Specific Modeling

Juha-Pekka Tolvanen, PhD, MetaCase Stephan Schulz, PhD, Conformiq

Contents

- Introduction to DSM and MBT
- DSM + MBT = ?
- Case 1: Web application (IT)
- Case 2: Military radio (embedded)
- Results
- How to get started
- Summary, Q&A

Domain-Specific Modeling (DSM)

- Models expressed with domain concepts
 No need to learn new languages
- Domain-Specific Modeling allows using:
 - existing terminology,
 - with known semantics, and
 - familiar notation
- DSM is applied in particular for automating repetitive development efforts*, but less in testing

* See references on EADS, NSN, Nokia, Panasonic, Polar Elektro, USAF

Example: Industrial Process Plant

Domain terminology and concepts

 Detailed information specifying functional & physical characteristics of a component of a system, plant or facility (e.g. pump)

CENTRIFUGAL PUMP API-610 DATA SHEFT	JOB NO TEM NO T REQ / SPEC No 7 RUBCH ORDER No 7	DATE 29-Oct-09				A Stuffing
MKS UNITS	INQUIRY No.	BY DAA		$\langle \rangle$	ß	B Packing
APPLICABLE TO: O PROPOSAL O PURCHASE	AS BUILT					
FOR:			Q	000		C Shaft
NO. REQ. PUMP SIZE	TYPE: NO. STAGES	<u></u>	ß		D.	D Shaft Si
MANUFACTURER	MODEL: SERIAL No.			-		D Gharto
NOTES: INFORMATIC		JRER OR PURCHASER		$\land \land \lor$	~	E Vane
				-1/2		- ,
	int Data				-	F Casing
						0
GEAR ITEM No.				16050	Ð	G eye of
GEAR PROVIDED BY	_					H Impelle
GEAR DATA SHT. N	nnnt				G	ii iiipeile
	IEEL	DT'D)			1	I Casing v
			E		$\langle - \rangle$	
OTHER	CHLORIDE CONCENTRATION (PPMW)		Ŭ T	~ Allo/	\sim	J Impeller
O SUCTION PRESSURE MAX/RATED / (Kg/cr	n ² g) INSTRUMENT AIR: MAX / MIN PRESS	/(Kg/cm ²)				
O DISCHARGE PRESSURE (Kg/cr	n ² g) LIQUID					K Discha
O DIFERENTIAL PRESSURE (Kg/cr	n ² g) O TYPE OR NAME OF LIQUID		Ē			
O DIFF. HEAD (m) NPSHA (m) O PUMPING TEMPERATURE:		4	2/		
O PROCESS VARIATIONS		MIN(°C)				
	O VAPOR PRESSURE (Kg/cm ²)(°C)				
SERVICE: () CONT. () INTERMITTENT (STARTS/DAY)	RELATIVE DENSITY (SPECIFIC GRAVITY):					
O PARALLEL OPERATION REQ'D	NORMAL MAX	MIN	1			

rina

Design with domain-concepts

* Turton et al., Analysis, Synthesis and Design of Chemical Processes, Prentice Hall. 2012

Domain terminology: valves

Example Specification

How to test a cooling system?

- Temperature
 - Produce too much heat?
- Pressure
 - Incorrect input/output pressure?
- Flow rates
 - Conflicting flow rates in the configuration?
- Control logic
- Instrument configuration

Example: Cooling in process plant*

* M. Blackburn, P. Denno, Virtual Design and Verification of Cyber-Physical Systems: Industrial Process Plant Design, Procedia Computer Science 28, Elsevier, 2014

Specifying properties of components

Generic

00	P&I Diagram: C	CHL1, April 15, 2013, 10:39		Pipe: Relationship
Graph Edit View Types F	ormat Help		Pine Pine	/1 Pine Hx1 Pine Hx1
™ ⇔ ⊀ ∿ ∿ ") ⊂	-🕂 🖏 🔎 🗆 🖬 🗙 🧎 🔚 Installati	on TTM TWINCAT	Tipe Tipe.	Претихт
∞ 🔴 🛇 🔘 🖯 ≷ 🗖 Þ	4 () + + +		Diameter:	10
Gensor ↓ PT1 ≥ System end ☐ Thermostat HV Valve	о ТК1	PV1	Length: Cover:	10 none
→PV1 →V1 ↓V2 □→V2 □→Tk1 □→+ Joint	P P P P P P P P P P			hermally insulated acketed cooled or heated
tee tee tee 'Comment Closed Loop, Coolin	Valve: Object			
	varie. Object			
Name:	V1		Heat Exc	hanger: Object
Number of valve ends:	 ● Two ● Three 	Name:	Hx	1
Valve type:	O Normal	Flow rate:	110	000
	 Manual Control 	Flow rate u	inits: gpr	n 📑
Closing by:	ball butterfly	Pressure:	200)
	 diaphragm needle 	Pressure u	nits: psi	g 📑
Flow rate:	1200	Temperatu	re: 200)
Flow rate units:	gpm 📫	Temperatu	re scale: F	•
ОК	Cancel Info		ок 🤇	Cancel Info

Specific

Example: Cooling in process plant*

* M. Blackburn, P. Denno, Virtual Design and Verification of Cyber-Physical Systems: Industrial Process Plant Design, Procedia Computer Science 28, Elsevier, 2014

Both structure and behavior

Domain-Specific means:

- Use of concepts from the problem domain
 - Already familiar => no need to learn new
 - Have known semantics
- Having a special focus
 - Use concepts that are relevant for the task: testing, verification, validation
- Use concrete syntax that enables communication and collaboration
 - Not a cryptic programming/scripting language
 - Apply style close to the domain's natural representation

Steps for Defining Domain-Specifc Modeling Languages and Generators

About Model-Based Testing (MBT)

- Umbrella term for using models in a testing context
- One approach is to use MBT for automating test design
 - Here model reflects operation of the system to be tested
 - MBT complements test execution
 - Recognized by worldwide industrial standards (ETSI)

Evolution of Software Testing

Test Approach Comparison Heat Map

Test Approach	Test Coverage	Early Problem Discovery	Functional Complexity	Test Artifact Reuse	Required Skill Set	Test Process Optimization	Productivity Gain Initial	Productivity Gain Iteration
Manual Test	2	2	2	0	2	1	1	1
Test Scripts	5	5	6	6	7	4	4	3
Test Modeling		5	5	4	5	6	7	6
Automated Test Design	10	8	8	8	8	8	6	8
DSL Driven ATD	10	8	8	9	4	8	8	9

ATD+: DSL driven MBT

- Draws from all benefits of conventional ATD
 - Automated test design and traceability
 - Integration into test automation ecosystem
 - 5x improvements in productivity
- Enables testers to model system operation
 - No longer programming skills required
 - Less training and faster ramp up
- Allows other stakeholders to review models
 - "Shift (really) left" ... engage your customer!

~5x (DSL) combined with ~5x (ATD) = ???

Automated Test Design Workflow

Model System Operation Direct & Review Test Design Generate Test Scripts & Documentation

Domain Specific Modeling Tool Model Based Test Design Tool Test Execution Tool(s)

Why are DSLs so Important in Testing?

rectangle(3,1, grey) rectangle(5,2) circle (2), circle(2) circle(1), circle(1)

Testing is about achieving a common understanding

Case 1: Conformiq Creator

Generic

- A DSL developed for
 - Modeling system operation for system & system integration & end-to-end testing
 - First focus on *Enterprise IT* applications, frontends, backends, systems, etc.
 - Target testers and SMEs
- Encodes best practice
 - Provides set of pre-defined modeling building blocks

Specific

Modeling before Creator

The Actual Application to Tested

(-) @ http://	/esd.conformiq.com/ 🔎 = 🗟 C 🗙 🏾 🏾	conformia.	com	×	1 (C 100)	×
File Edit View	Favorites Tools Help					00 00 101
Your shopping bash	ket contains 1 item(s).					*
SKU	Description	Qty	Unit Price	Price	Actions	s 🚽
CQ0002 Por	table Personal Coffee Station	8	\$20	\$160	Remove all	
Total excl. shippin	g and discounts			\$160		
SKU: CQ CQ0002	Qty: 1		Add to shop	ping basket		
Checkout						
Copyright © Confo	ormiq Inc. 2011					
						€ 100% ▼

Creator Concepts

- Activity Diagrams
 - Flows specify specific aspects of system operation to be tested
 - <u>Domain specific</u> actions and data objects from keyword repository concretize activities and decisions
- Interface Diagrams
 - Specify external interfaces available for testing based on predefined interface objects
 - Are the source for generated actions and data objects

About Interface Diagrams

	Description	Qty Unit Price	Price Actions	
CQ0002 Porta	ble Personal Coffee Station	8 \$20	\$160 Remove all	
Total excl. shipping	and discounts		\$160	
SKIL CO	011	Add to shopp	aing basket	
CQ000Z	<u></u>			
Checkout				
Copyright © Conform	niq Inc. 2(11			
				100%
	tem	s	ESD Main	
,🛃 Item			Shopping cart: Items	s UI Table
,🛃 Item sku: Text Box (S	tring) sku: Strin	g Cell	Item: Form	

About Activity Diagrams

Fulfill a dual purpose:

- Specifies "what" is to be tested, i.e., relevant system operation, in terms of flows
 - Using standard concepts of initial, final, activity, decision, event, merge nodes and control flows
- Specifies "how" to test based on action keywords and data objects generated from interface diagrams
 - Actions from action keyword repository refine activity descriptions
 - Data objects refine (graphical) conditions

Activity Diagram Example

Generic vs Domain Specific

Generic Concept	Domain Specific Concept
Class	Message, Screen, Button
integer, boolean, String	Number, Checkbox, Dropdown Box
Receive on a port	Click a button, fill a form, Receive a message
Send from a port	Display a screen, Send a message
Compare each field of a variable to basic value	Compare <u>entire</u> message or form variable against value

Note: Domain = Application Domain <u>and</u> Testing Domain!

Idea: Simplify, Reduce & Reuse

- Symbols have look & feel closer to application domain
- Abstraction and layering of model information
- Object driven specification enables reuse
- Changes to interfaces are updated in activity diagrams
- Less modeling errors by using "specification by selection"

Modeling for Testing

- Work with complete data object values
- Enable use wildcards
- Visual indication of pre-conditions

What do Generated Tests look like?

1	2	A	В	С	D	
	1	Test case 1:	V userName: Kimmo passwd: 123			
Γ	• 2	Summary:	Fill in			
	• 3	Overall Verdict:	Open	Executed against SUT Release:	Fill in	
	• 4	Executed by:	Fill in	Test Execution date & time:	Fill in	
	• 5	Verifies Requirements:	HP QC 1.2.3			
	• 6	Step	Action(s)	Verification Point(s)	Verdict	Observations
	. 7	1	Configure SUT where baseUrl is "esd.conformiq.com"	Application displays a Login Screen	Open	Fill in
	. 8	2	Fill out the UserInfo Form in the Login Screen where userName is "Kimmo", passwd is "123" Click OK Button in the Login Screen	Application displays a ESD Main Screen where Shopping cart is empty where in Item Form sku is "", qty is 0, sku Text Box widget is enabled, qty Text Box widget is enabled, Add Item Button widget is enabled	Open	Fill in
	• 9	3	Select New choice in File menu in the Login Screen	No errors can be observed at the SUT	Open	Fill in
	10					
	11	Test case 2:	Add item with sku CQ_0002 and qty 5 to shopping cart			
+	21					
	22	Test case 3:	Add item with sku CQ_0003 and qty 5 to shopping cart			
+	32	T A -	Additions with also also and the Alexandra and			
	33	lest case 4:	Add item with sku abc and dty -1 to shopping cart			
	43	Test case 5:	(1) CB: Checkout			
H	4 F H	Cover Page Test suite DC1	TraceabilityMatrix 2			▶ []

... or VB or Java or Perl or Pyton or TTCN-3 or etc

1st Industrial Feedback on Creator

- <u>Doubled</u> productivity over conventional UML/ Java based automated test design solution
- Training need reduced from 4 weeks to <u>4 days</u>
- Subject Matter Experts (SMEs) and manual testers are able to model for testing
- Ecosystem from conventional automated test design approach could be reused

Case 2: Elektrobit Military radio

Generic

EB Tough VoIP Features

- Tough VoIP is a wired phone that is using UDP/IP network for connection
- Manufacturer: Elektrobit
- Main features:
 - Easy configuration
 - Point-to-Point call
 - All call
 - War-proof device
 - As simple as possible

Testing problem

Two language solution

Language development

Model example 1: Modeling test cases

Model example 2: Modeling for test generation

How to get started on a DSL design

- Define
 - Concepts
 - Rules
 - Symbols
 - Generators
- Focus on how you think about a problem not how you (re)solve or describe it today
 - DSLs are not effective as graphical general purpose programming languages

Experiences

- About 10 times faster with modeling
- Set-up time estimation:
 - 2 weeks for the first version
 - 1 more week for making it better

- Other benefits:
 - Visualization makes it easy to understand
 - Easy test configuration
 - Test coverage dramatically increase with MBT
 - Mass testing with MBT models
 - No special skills needed for creating test cases

Results of combining DSLs + MBT

The case studies show:

- Easier adoption
 - Better acceptance, short ramp up
- Significantly faster model development
 - Higher abstraction leads to improved productivity
 - Automation of model creation
 - Immediate feedback & guidance during model creation
- Wider model accessibility
 - Visualization makes it easier to understand
 - Domain experts can participate
 - Customers can review models!

Summary

- Classic DSLs benefits found to be applicable in testing
 - Driven by fully automatic model transformations
 - Prevent illegal model construction & enforce methodology
- Challenge: Keep DSL lean *and* expressive
 - Leanness yields simplicity but too lean may lead to rejection!
 - Important to use tools that enable flexibility by allowing language evolution
- We believe DSL driven MBT will establish itself as the next step in evolution of software testing

How to get started: Concepts

- What are the different object types?
 Example: Screen, forms, widgets, messages
- What are their properties? What kind of values can they take? What is really relevant for testing?
 - Example: Dependencies between form fields? Yes
 - Example: Screen where button is located? Yes
 - Example: Pixel location of a button? No
 - Example: Underlying data base table structure? No
- What is the mapping domain concepts to concepts in the general purpose language?

- Example: Button click maps to receiving a class

How to get started: Rules

- How many objects can exist?
 - Example: Only one starting point
- How can objects be connected?
 - Example: Only input actions can produce data
- Which property values have to be unique? Example: Screen and form names
- What are valid property values? - Example: Only optional fields can be omitted
- When is a diagram ready for test generation?

How to get started: Symbols

- What type of diagrams are needed?
- Which objects are important to visualize in which diagram or at all?

– Example: Author of a diagram

 What is the absolutely essential information important to get first understanding?

- Example: Action has a pre-condition

How should the information be represented?
 – Example: Symbol color, shape versus text

How to get started: Generators

- What type of information is needed to be generated?
 - Example: Code for test generation
 - Example: Model documentation
 - Example: "Live" model analysis
- In which order should objects be traversed to produce the generated code?
- How should property values be processed and converted to produce best target code?
- How to structure and modularize generator code to maximize reuse?

Thank you!

- Questions, comments, counter arguments, own experiences...
- Contact
 - Juha-Pekka Tolvanen [jpt@metacase.com]
 - <u>www.metacase.com</u>

- Stephan Schulz [stephan.schulz@conformiq.com]
- www.conformiq.com

References [1/2]

- M. Blackburn, P. Denno, Virtual Design and Verification of Cyber-Physical Systems: Ind • Process Plant Design, Procedia Computer Science 28, Elsevier, 2014
- S. Kelly, J.-P. Tolvanen, "Domain-Specific Modeling: Enabling Full Code Generation", W • 2008. http://dsmbook.com
- O.-P. Puolitaival et al, "Utilizing Domain-Specific Modeling for Software Testing", Proce • of VALID. October 2011
- U. Oligschläger, "Modell-gestütztes Framework für das Testen von • Mess- und Automatisierungssoftware für Prüfstände der Automobilindustrie" [in German], GI TAV#34 Report, February 2013
- Industrial presentations and tutorials at ETSI User Conferences on MBT •
 - http://www.model-based-testing.de/mbtuc11/program.html
 - http://www.elvior.com/model-based-testing-uc-2012/program
 - http://ucaat.etsi.org/2013/program.html
- MBT community http://model-based-testing.info/ ٠
- **ETSI MBT Standardization** .
 - http://portal.etsi.org/portal/server.pt/community/MTS/323
 - MBT Modeling ES 202 951 http://pda.etsi.org/pda/queryform.asp
- "Functional Testing Tools Are Not Enough.", Forrester ٠ Research Inc. Report, Testing Tools Landscape, 2010
 - Summary available via www.conformig.com

ETSI

References [2/2]

- EADS, <u>www.metacase.com/papers/MetaEdit in EADS.pdf</u>
- NSN, Architecture in the language, <u>www.metacase.com/cases/architectureDSMatNSN.html</u>
- Nokia, <u>www.metacase.com/papers/MetaEdit in Nokia.pdf</u>
- Panasonic, Proceedings of Domain-Specific Modeling, 2007, <u>www.dsmforum.org/events/DSM07/papers/safa.pdf</u>
- Polar, Proceedings of Domain-Specific Modeling , 2009, <u>www.dsmforum.org/events/DSM09/Papers/Karna.pdf</u>
- USAF, ICSE, <u>http://dl.acm.org/citation.cfm?id=227842</u>