
1

Cutting MBT Adoption Time with
Domain Specific Modeling

Juha-Pekka Tolvanen, PhD, MetaCase
Stephan Schulz, PhD, Conformiq

2

Contents

• Introduction to DSM and MBT
• DSM + MBT = ?
• Case 1: Web application (IT)
• Case 2: Military radio (embedded)
• Results
• How to get started
• Summary, Q&A

3

Domain-Specific Modeling (DSM)

• Models expressed with domain concepts
– No need to learn new languages

• Domain-Specific Modeling allows using:
– existing terminology,
– with known semantics, and
– familiar notation

• DSM is applied in particular for automating
repetitive development efforts*, but less in
testing

* See references on EADS, NSN, Nokia, Panasonic, Polar Elektro, USAF

4

5

Domain terminology and concepts

• Detailed information specifying functional &
physical characteristics of a component of a
system, plant or facility (e.g. pump)

Product Data
Sheet

6

Design with domain-concepts

* Turton et al., Analysis, Synthesis and Design of Chemical Processes, Prentice Hall. 2012

7

Domain terminology: valves

http://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=K3x0K3u48cPULM&tbnid=hSt30bkzjjnE8M:&ved=0CAUQjRw&url=http://pipinginstrumentationdiagram.blogspot.com/&ei=fHahU__2IKWCzAP9pYL4Aw&bvm=bv.69137298,d.bGQ&psig=AFQjCNHaoTVzRR8PGKMts5_UOzubjafyOw&ust=1403176947145740

8

Example Specification

Closed loop, Heat transfer,
Liquid circulating (CHL)

May include:
• System Requirements Tree
• System Requirements
• Component Requirements
• Interface Requirements

9

How to test a cooling system?

• Temperature
– Produce too much heat?

• Pressure
– Incorrect input/output pressure?

• Flow rates
– Conflicting flow rates in the configuration?

• Control logic
• Instrument configuration

10

Example: Cooling in process plant*

* M. Blackburn, P. Denno, Virtual Design and Verification of Cyber-Physical Systems:
Industrial Process Plant Design, Procedia Computer Science 28, Elsevier, 2014

11

Specifying properties of components
Generic Specific

http://openclipart.org/people/BigRedSmile/BigRedSmile_Rule.svg

12

Example: Cooling in process plant*

* M. Blackburn, P. Denno, Virtual Design and Verification of Cyber-Physical Systems:
Industrial Process Plant Design, Procedia Computer Science 28, Elsevier, 2014

13

Both structure and behavior

• Same objects: different views used to
formalize different aspects of the system

• Languages integrated: can share objects used
in different diagram types

Behavioral constraint:
if valve is closed then
 pump should be closed
else if value is open then
 pump can be open

14

Domain-Specific means:

• Use of concepts from the problem domain
– Already familiar => no need to learn new
– Have known semantics

• Having a special focus
– Use concepts that are relevant for the task: testing,

verification, validation
• Use concrete syntax that enables communication

and collaboration
– Not a cryptic programming/scripting language
– Apply style close to the domain’s natural representation

15

Steps for Defining Domain-Specifc
Modeling Languages and Generators

Concepts Symbols

Generators Rules
1 2 3 4

Specify language
concepts & their
properties

Create a
notation

Define rules for
the concepts

Define
generators

16

About Model-Based Testing (MBT)

(System)
Model

Environment

Real
System

Goals
; …
; …
; …

Synthesize

• Umbrella term for using models in a testing context
• One approach is to use MBT for automating test

design
– Here model reflects operation of the system to be tested
– MBT complements test execution
– Recognized by worldwide industrial standards (ETSI)

17

Manual

Scripts-Based
Capture/Replay

Frameworks
Keyword Driven

Evolution of Software Testing

Test Models

ATD

MBT

ATD+

ATD+ is ATD driven by a
domain specific language

Automated Test Design (ATD)
uses models of system
operation as its input and is
the most advanced Model
Based Testing (MBT)
technology

18

Test Approach Comparison Heat Map

Test Approach Te
st

Co
ve

ra
ge

Ea

rly
 P

ro
bl

em

Di
sc

ov
er

y
Fu

nc
tio

na
l

Co
m

pl
ex

ity

Te
st

 A
rt

ifa
ct

Re

us
e

Re
qu

ire
d

Sk
ill

 S
et

Te

st
 P

ro
ce

ss

O
pt

im
iza

tio
n

Pr

od
uc

tiv
ity

G

ai
n

In
iti

al

Pr
od

uc
tiv

ity

G
ai

n
Ite

ra
tio

n

Manual Test 2 2 2 0 2 1 1 1

Test Scripts 5 5 6 6 7 4 4 3

Test Modeling 7 5 5 4 5 6 7 6

Automated Test Design 10 8 8 8 8 8 6 8

DSL Driven ATD 10 8 8 9 4 8 8 9

http://www-01.ibm.com/software/rational

19

ATD+: DSL driven MBT

• Draws from all benefits of conventional ATD
– Automated test design and traceability
– Integration into test automation ecosystem
– 5x improvements in productivity

• Enables testers to model system operation
– No longer programming skills required
– Less training and faster ramp up

• Allows other stakeholders to review models
– “Shift (really) left” … engage your customer!

~5x (DSL) combined with ~5x (ATD) = ???

20

Automated Test Design Workflow

Model
System Operation

Direct & Review
Test Design

Generate Test Scripts
& Documentation

Domain Specific
Modeling Tool

Model Based
Test Design Tool

Test Execution
Tool(s)

21

Why are DSLs so Important in Testing?

Testing is about achieving a common understanding

rectangle(3,1, grey)
rectangle(5,2)
circle (2), circle(2)
circle(1), circle(1)

22

Case 1: Conformiq Creator

• A DSL developed for
– Modeling system operation for

system & system integration &
end-to-end testing

– First focus on Enterprise IT
applications, frontends,
backends, systems, etc.

– Target testers and SMEs

• Encodes best practice
– Provides set of pre-defined

modeling building blocks

Generic Specific

http://openclipart.org/people/BigRedSmile/BigRedSmile_Rule.svg

23

Modeling before Creator

http://www-01.ibm.com/software/rational

24

The Actual Application to Tested

http://www-01.ibm.com/software/rational

25

Creator Concepts
• Activity Diagrams

– Flows specify specific aspects of
system operation to be tested

– Domain specific actions and data
objects from keyword repository
concretize activities and decisions

• Interface Diagrams
– Specify external interfaces

available for testing based on pre-
defined interface objects

– Are the source for generated
actions and data objects

ID

Keyword Repository

AD
 Display
 Fill
 Query
 Req

?
R

?
N

Y

S
R _

+ ?

A

I

V

http://www-01.ibm.com/software/rational

26

About Interface Diagrams

27

About Activity Diagrams
Fulfill a dual purpose:
• Specifies “what” is to be tested, i.e., relevant system

operation, in terms of flows
– Using standard concepts of initial, final, activity, decision,

event, merge nodes and control flows

• Specifies “how” to test based on action keywords
and data objects generated from interface diagrams
– Actions from action keyword repository refine activity

descriptions
– Data objects refine (graphical) conditions

28

Activity Diagram Example

Set URL

Form variable
data object

Store form data
produced by click
action in variable

Compare all form data
against multiple values

Click button action with
blocking pre-condition ()

Requirement action

Refer to
subdiagram

Display screen verification action

Conditional () action

29

Generic vs Domain Specific

Generic Concept Domain Specific Concept

Class Message, Screen, Button

integer, boolean,
String

Number, Checkbox,
Dropdown Box

Receive on a port Click a button, fill a form,
Receive a message

Send from a port Display a screen,
Send a message

Compare each field of a
variable to basic value

Compare entire message or
form variable against value

Note: Domain = Application Domain and Testing Domain!

30

Idea: Simplify, Reduce & Reuse

• Symbols have look & feel closer to application domain
• Abstraction and layering of model information
• Object driven specification enables reuse
• Changes to interfaces are updated in activity diagrams
• Less modeling errors by using “specification by selection”

31

Modeling for Testing

• Work with complete data object values
• Enable use wildcards
• Visual indication of pre-conditions

32

What do Generated Tests look like?

… or VB or Java or Perl or Pyton or TTCN-3 or etc

33

1st Industrial Feedback on Creator

• Doubled productivity over conventional UML/
Java based automated test design solution

• Training need reduced from 4 weeks to 4 days
• Subject Matter Experts (SMEs) and manual

testers are able to model for testing
• Ecosystem from conventional automated test

design approach could be reused

34

Case 2: Elektrobit Military radio
Generic Specific

http://openclipart.org/people/BigRedSmile/BigRedSmile_Rule.svg

35

EB Tough VoIP Features

• Tough VoIP is a wired
phone that is using
UDP/IP network for
connection

• Manufacturer: Elektrobit
• Main features:

– Easy configuration
– Point-to-Point call
– All call
– War-proof device
– As simple as possible

36

Testing problem

ETC...

37

EB Test Tool Platform +
OpenTTCN tester

Two language solution

Model Model

MBT

TTCN-3 TTCN-3

Modeling
one test case

Modeling a
test logic

Model-Based
Testing
generates
multiple test
cases

Generating
one test case

Executing the
test case

Executing
test cases

38

Language development
EB’s test
expert,
coder

Language
developer Specs + code sample

Language, example models
Modeling,
Trying,
Coding

Model
development

Model
development

Change request

Language

Testing

N times CR + update...

Language developing

39

Model example 1:
Modeling test cases

40

Model example 2:
Modeling for test generation

41

How to get started on a DSL design

• Define
– Concepts
– Rules
– Symbols
– Generators

• Focus on how you think about a problem not
how you (re)solve or describe it today
– DSLs are not effective as graphical general

purpose programming languages

42

0 5 10 15 20

DSM

Coding

Days

Creating DSM solution
Test suite 1
Test suite 2
Test suite 3
Test suite 4
Test suite 5

Experiences
• About 10 times faster with modeling
• Set-up time estimation:

– 2 weeks for the first version
– 1 more week for making it better

• Other benefits:
– Visualization makes it easy to understand
– Easy test configuration
– Test coverage dramatically increase with MBT
– Mass testing with MBT models
– No special skills needed for creating test cases

43

Results of combining DSLs + MBT
The case studies show:
• Easier adoption

– Better acceptance, short ramp up
• Significantly faster model development

– Higher abstraction leads to improved productivity
– Automation of model creation
– Immediate feedback & guidance during model creation

• Wider model accessibility
– Visualization makes it easier to understand
– Domain experts can participate
– Customers can review models!

44

Summary

• Classic DSLs benefits found to be applicable in testing
– Driven by fully automatic model transformations
– Prevent illegal model construction & enforce methodology

• Challenge: Keep DSL lean and expressive
– Leanness yields simplicity but too lean may lead to

rejection!
– Important to use tools that enable flexibility by allowing

language evolution

• We believe DSL driven MBT will establish itself as the
next step in evolution of software testing

45

How to get started: Concepts
• What are the different object types?

– Example: Screen, forms, widgets, messages
• What are their properties? What kind of values

can they take? What is really relevant for testing?
– Example: Dependencies between form fields? Yes
– Example: Screen where button is located? Yes
– Example: Pixel location of a button? No
– Example: Underlying data base table structure? No

• What is the mapping domain concepts to
concepts in the general purpose language?
– Example: Button click maps to receiving a class

46

How to get started: Rules
• How many objects can exist?

– Example: Only one starting point
• How can objects be connected?

– Example: Only input actions can produce data
• Which property values have to be unique?

– Example: Screen and form names
• What are valid property values?

– Example: Only optional fields can be omitted
• When is a diagram ready for test generation?

– Example: At least one input and verification action

47

How to get started: Symbols

• What type of diagrams are needed?
• Which objects are important to visualize in

which diagram or at all?
– Example: Author of a diagram

• What is the absolutely essential information
important to get first understanding?
– Example: Action has a pre-condition

• How should the information be represented?
– Example: Symbol color, shape versus text

48

How to get started: Generators
• What type of information is needed to be

generated?
– Example: Code for test generation
– Example: Model documentation
– Example: “Live” model analysis

• In which order should objects be traversed to
produce the generated code?

• How should property values be processed and
converted to produce best target code?

• How to structure and modularize generator code
to maximize reuse?

49

Thank you!

• Questions, comments, counter arguments,
own experiences…

• Contact
– Juha-Pekka Tolvanen [jpt@metacase.com]
– www.metacase.com

– Stephan Schulz [stephan.schulz@conformiq.com]
– www.conformiq.com

http://www.metacase.com/
http://www.conformiq.com/
http://www.metacase.com/

50

References [1/2]
• M. Blackburn, P. Denno, Virtual Design and Verification of Cyber-Physical Systems: Industrial

Process Plant Design, Procedia Computer Science 28, Elsevier, 2014
• S. Kelly, J.-P. Tolvanen, “Domain-Specific Modeling: Enabling Full Code Generation”, Wiley,

2008. http://dsmbook.com
• O.-P. Puolitaival et al, “Utilizing Domain-Specific Modeling for Software Testing”, Proceedingss

of VALID, October 2011
• U. Oligschläger, “Modell-gestütztes Framework für das Testen von

Mess- und Automatisierungssoftware für Prüfstände der Automobilindustrie“ [in German], GI
TAV#34 Report, February 2013

• Industrial presentations and tutorials at ETSI User Conferences on MBT
– http://www.model-based-testing.de/mbtuc11/program.html
– http://www.elvior.com/model-based-testing-uc-2012/program
– http://ucaat.etsi.org/2013/program.html

• MBT community http://model-based-testing.info/
• ETSI MBT Standardization

– http://portal.etsi.org/portal/server.pt/community/MTS/323
– MBT Modeling ES 202 951 http://pda.etsi.org/pda/queryform.asp

• “Functional Testing Tools Are Not Enough.”, Forrester
Research Inc. Report, Testing Tools Landscape, 2010
– Summary available via www.conformiq.com

http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.model-based-testing.de/mbtuc11/program.html
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://www.elvior.com/model-based-testing-uc-2012/program
http://ucaat.etsi.org/2013/program.html
http://ucaat.etsi.org/2013/program.html
http://model-based-testing.info/
http://model-based-testing.info/
http://model-based-testing.info/
http://model-based-testing.info/
http://model-based-testing.info/
http://portal.etsi.org/portal/server.pt/community/MTS/323
http://pda.etsi.org/pda/queryform.asp
http://www.conformiq.com/
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=33492
http://www.model-based-testing.de/mbtuc11/program.html

51

References [2/2]
• EADS, www.metacase.com/papers/MetaEdit_in_EADS.pdf
• NSN, Architecture in the language,

www.metacase.com/cases/architectureDSMatNSN.html
• Nokia, www.metacase.com/papers/MetaEdit_in_Nokia.pdf
• Panasonic, Proceedings of Domain-Specific Modeling, 2007,

www.dsmforum.org/events/DSM07/papers/safa.pdf
• Polar, Proceedings of Domain-Specific Modeling , 2009,

www.dsmforum.org/events/DSM09/Papers/Karna.pdf
• USAF, ICSE, http://dl.acm.org/citation.cfm?id=227842

http://www.metacase.com/papers/MetaEdit_in_EADS.pdf
http://www.metacase.com/cases/architectureDSMatNSN.html
http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf
http://www.dsmforum.org/events/DSM07/papers/safa.pdf
http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf
http://dl.acm.org/citation.cfm?id=227842
http://dl.acm.org/citation.cfm?id=227842

