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Objectives 

• Report on 20 years of experience in automated 

software testing & verification research and 

innovation 

• Explain why and how model-based testing is in many 

situations—though not always—the best solution to 

test automation 

• Show why and how the tailoring of the MBT process 

and technology to context is a key success factor 

• Present representative project examples 

• Identify challenges and lessons learned 

• Guidelines 
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Testing vs. Verification 

• Testing: The process of executing software with the 

intent of finding and correcting defects 

• Verification: The process of analyzing a 

representation or model of the system specification or 

design in order to reason about its properties 

• Verification takes place in earlier phases than testing: 

feasibility of requirements, design decisions … 

• Will focus mostly on testing here, but there are many 

common challenges, technologies, and lessons 

learned 
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SnT Software Verification and Validation Lab 

• SnT centre, Est. 2009: Interdisciplinary, 

ICT security-reliability-trust 

• 200 scientists and Ph.D. candidates, 20 

industry partners 

• SVV Lab: Established January 2012, 

www.svv.lu 

• 20 scientists (Research scientists, 

associates, and PhD candidates) 

• Industry-relevant research on system 

dependability: security, safety, reliability 

• Six partners: Cetrel, CTIE, Delphi, SES, 

IEE, Hitec … 
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An Effective, Collaborative Model of Research 
and Innovation 

Basic Research Applied Research 

Innovation & Development 

• Basic and applied research take place in a rich context  

 

• Basic Research is also driven by problems raised by applied 

research 

 

• Main motivation for SnT’s partnership program 
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Collaboration in Practice 

• Research informed by practice 

• Well-defined problems in context 

• Realistic evaluation 

• Long term industrial collaborations 
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“Model-based”? 

• All engineering disciplines rely 

on abstraction and therefore 

models 

• In many cases, it is the only way 

to effectively automate testing or 

verification => scalability 

• Models have many other 

purposes: Communication, 

support requirements and design 

• There are many ways to model 

systems and their environment 

• In a given context, this choice is 

driven by the application domain, 

standards and practices, 

objectives, and skills 
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Models in Software Engineering 

• Model: An abstract and analyzable description of software 

artifacts, created for a purpose 
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Requirements models Architecture 
models Behavioural  

models 
Test 
models 

• Abstract: Details are omitted. Partial representation. Much 

smaller and simpler than the artifact being modeled.  

• Analyzable: Leads to task automation  

• Standards: UML, SySML, MARTE, BPMN, … 

 

 



Test Automation Problem 

Decomposition 

Oracle Verdict 

(correct/incorrect) 

SW Under Test 
Driver 

executes 

creates 

Stub(s) 

uses 

Outputs 

Inputs 
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Automation Needs 

• Test case generation 

• Test oracle (verdict) generation 

• Test stubs generation 

• Test driver generation (test execution) 

• Logging and analysis of test results 

• Test suite evolution, e.g., requirements changes 
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Common Testing Technology 

• Test case generation 

• Test oracle (verdict) generation 

• Test stubs generation 

• Test driver generation (test execution) 

• Logging and analysis of test results 

• Test suite evolution, e.g., requirements changes 
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Consequences 

• Test automation not scalable 

• Expensive (generation and evolution), though costs 

often hidden 

• Error-prone  

• Not systematic 

• Not predictable 
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Mental 
Model

System or 
Environment 

Models

Test suites & 
scripts

Test Stubs

Oracles

Test Objectives

Test ResultsTest Analysis

MBT Process 



Testing Driven by Environment Modeling 
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• Three-year project with two industry partners 

– Soft real-time systems: deadlines in order of 

hundreds of milliseconds 

• Jitter of few milliseconds acceptable 

– Automation of test cases and oracle generation, 

environment simulation 
 

Tomra – Bottle Recycling Machine 

WesternGeco – Marine Seismic 

Acquisition System 

Context 
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• Independent  

–  Black-box 

• Behavior driven by 

environment 

– Environment model 

• Test Engineers: Software 

engineers 

• No use of Matlab/Simulink 

• One model for 

– Environment simulator 

– Test cases and oracles 

• UML profile (+ limited use of 

MARTE) 

Environment 

Simulator 

Test cases 

Environment Models 

Test oracle 

Environment Modeling and Simulation 
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Domain Model 
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Behavior Model 
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• Test cases are defined by 

– Simulation configuration 

– Environment configuration 

• Environment Configuration 

– Number of instances to be created for each component in 

the domain model (e.g., the number of sensors) 

• Simulator Configuration 

– Setting of non-deterministic attribute values 

• Bring the system state to an error state by searching for 

appropriate values for non-deterministic environment 

attributes 

• Search metaheuristics to search the test case space 

• Test oracle: Environment model error states (state invariants) 

 

Automated Test Case Generation and Oracles 
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Testing Closed Loop Controllers 

21 



 

 

 

 

Complexity and amount of software used on vehicles’  
Electronic Control Units (ECUs) grow rapidly  

More functions 

Comfort and variety 

Safety and reliability 

Faster time-to-market 

Less fuel consumption 

Greenhouse gas emission laws 
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Three major software development stages in  
the automotive domain 
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Hardware-in-the-Loop 

Stage
Model-in-the-Loop  

Stage

Simulink Modeling

 Generic 

Functional

Model

MiL Testing

Software-in-the-Loop 

Stage

Code Generation

and Integration

Software Running 

on ECU

SiL Testing

 Software

Release

HiL Testing



Major Challenges in MiL-SiL-HiL Testing  

• Manual test case generation 

 

• Complex functions at MiL, and large and integrated 

software/embedded systems at HiL    

 

• Lack of precise requirements and testing objectives 

 

• Hard to interpret the testing results 
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MiL testing 

Requirements 

The ultimate goal of MiL testing is to 

ensure that individual functions 

behave correctly and timely on any 

hardware configuration 

Individual Functions 
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A Taxonomy of Automotive Functions 

Controlling Computation 

State-Based Continuous Transforming Calculating 

unit convertors calculating positions,  

duty cycles, etc  

State machine 

controllers 
Closed-loop 

controllers (PID) 

Different testing strategies are required for 

different types of functions 
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Controller Plant Model and its Requirements 
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MiL-Testing of Continuous Controllers 

Exploration+
Controller-

plant model

Objective 

Functions  

Overview 

Diagram  

Test 

Scenarios
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Search Strategy 

• Search: 

• Inputs: Initial and desired values, configuration parameters 

• Example search technique: (1+1) EA (Evolutionary Algorithm) 

 
• Search Objective:  

• Find worst case scenarios for liveness, smoothness, 

responsiveness -> objective functions 

• For each scenario -> simulation 

 

 

 

 

 

 

 

 

 

• Result:  

• worst case scenarios or values to the input variables that are 

more likely to break the requirement at MiL level 

• stress test cases based on actual hardware (HiL)  
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Random Search vs. (1+1)EA  

Example with Responsiveness Analysis 

Random (1+1) EA 

30 

Responsiveness Responsiveness 

Iterations Iterations 



• We found much worse scenarios during MiL testing than our 

partner had found so far 

• They are running them at the HiL level, where testing is much 

more expensive: MiL results -> test selection for HiL 

• But further research is needed: 

– To deal with the many configuration parameters  

– To dynamically adjust search algorithms in different 

subregions 

 

 

Conclusions 

i.e., 31s. Hence, the horizontal axis of the diagrams in Figure 8 shows the number of

iterations instead of thecomputation time. In addition, westart both random search and

(1+1) EA from the same initial point, i.e., the worst case from the exploration step.

Overall in all the regions, (1+1) EA eventually reaches its plateau at a value higher

than the random search plateau value. Further, (1+1) EA ismoredeterministic than ran-

dom, i.e., thedistribution of (1+1) EA hasasmaller variance than that of random search,

especially when reaching theplateau (seeFigure8). In someregions (e.g., Figure8(d)),

however, random reaches its plateau slightly faster than (1+1) EA, while in some other

regions (e.g. Figure 8(a)), (1+1) EA is faster. We will discuss the relationship between

the region landscape and the performance of (1+1) EA in RQ3.

RQ3. We drew the landscape for the 11 regions in our experiment. For example, Fig-

ure9 showsthelandscape for two selected regions in Figures7(a) and 7(b). Specifically,

Figure 9(a) shows the landscape for the region in Figure 7(b) where (1+1) EA is faster

than random, and Figure 9(b) shows the landscape for the region in Figure 7(a) where

(1+1) EA is slower than random search.
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Fig.9. Diagrams representing the landscape for two representative HeatMap regions: (a) Land-

scape for the region in Figure 7(b). (b) Landscape for the region in Figure 7(a).

Our observations show that the regions surrounded mostly by dark shaded regions

typically haveaclear gradient between the initial point of thesearch and theworst case

point (see e.g., Figure 9(a)). However, dark regions located in a generally light shaded

areahaveanoisier shapewith several local optimum (seee.g., Figure 9(b)). It isknown

that for regions likeFigure9(a), exploitativesearch worksbest, while for those likeFig-

ure 9(b), explorative search is most suitable [10]. This is confirmed in our work where

for Figure 9(a), our exploitative search, i.e., (1+1) EA with σ = 0.01, is faster and more

effectivethan random search, whereas for Figure9(b), our search isslower than random

search. Weapplied amoreexplorativeversion of (1+1) EA where we let σ = 0.03 to the

region in Figure 9(b). The result (Figure 10) shows that the more explorative (1+1) EA

is now both faster and more effective than random search. We conjecture that, from the

HeatMap diagrams, we can predict which search algorithm to use for the single-state

search step. Specifically, for dark regions surrounded by dark shaded areas, we suggest

an exploitative (1+1) EA (e.g., σ = 0.01), while for dark regions located in light shaded

areas, we recommend a more explorative (1+1) EA (e.g., σ = 0.03).

6 Related Work
Testing continuous control systems presents anumber of challenges, and isnot yet sup-

ported by existing toolsand techniques [4, 1, 3]. Themodeling languages that havebeen

13
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MBT Projects Sample (< 5 years) 
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Company Domain Objective Notation Automation 

ABB Robot controller Safety UML Constraint Solver 

Cisco Video conference Robustness UML profile Metaheuristic 

Kongsberg Maritime Oil&gas, safety critical 

drivers 

CPU usage UML+MARTE Constraint Solver 

WesternGeco Marine seismic 

acquisition 

Functional testing  UML profile + MARTE Metaheuristic 

SES Satellite operator Functional testing UML profile Metaheuristic 

Delphi Automotive systems Testing 

safety+performance 

Matlab/Simulink Metaheuristic 

Lux. Tax department Legal & financial Legal Requirements 

testing 

UML Profile Under investigation 



Verifying CPU Time Shortage Risks in 

Integrated Embedded Software  

33 



 

 

 

 

Today’s cars rely on integrated systems 

  

• Modular and independent development 

 

• Many opportunities for division of labor and 

outsourcing 

 

• Need for reliable and effective integration 

processes  
34 



Integration process in the automotive domain 

AUTOSAR Models 
sw runnables 

sw runnables 
AUTOSAR Models 

Glue 

35 



36 

CPU Time Shortage in Integrated Embedded  
Software 

• Challenge 

– Many OS tasks and their many runnables run within a limited 

available CPU time  

• The execution time of the runnables may exceed the OS cycles 

• Our goal 

– Reducing the maximum CPU time used per time slot to be 

able to 

• Minimize the hardware cost 

• Enable addition of new functions incrementally  

• Reduce the probability of overloading the CPU in practice 
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5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

  

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

  

(a)

(b)

Fig. 4. Two possible CPU time usage simulations for an OS task with a 5ms
cycle: (a) Usage with bursts, and (b) Desirable usage.

its corresponding glue code starts by a set of declarations

and definitions for components, runnables, ports, etc. It then

includes the initialization part followed by the execution part.

In the execution part, there is one routine for each OS task.

These routines are called by the scheduler of the underlying

OS in every cycle of their corresponding task. Inside each

OS task routine, the runnables related to that OS task are

called based on their period. For example, in Figure 3, we

assume that the cycle of the task o1 is 5ms, and the period

of the runnables r1, r2, and r 3 are 10ms, 20ms and 100ms,

respectively. Thevalue of timer is the global system time. Since

the cycle of o1 is 5, the value of timer in the Task o1() routine

is always a multiple of 5. Runnables r 1, r2 and r3 are then

called whenever the value of timer is zero, or is divisible by

the period of r 1, r 2 and r 3, respectively.

Although AUTOSAR provides a standard means for OEMs

and suppliers to exchange their software, and essentially

enables the process in Figure 1, the automotive integration

process still remains complex and erroneous. A major inte-

gration challenge is to minimize the risk of CPU shortage

while running the integrated system in Figure 1. Specifically,

consider an OS task with a 5ms cycle. Figure 4 shows two

possible CPU time usage simulations of this task over eight

time slots between 0 to 40ms. In Figure 4(a), there are bursts

of high CPU usage at two time slots at 0ms and 35ms, while

the CPU usage simulation in Figure 4(b) is more stable and

does not include any bursts. In both simulations, the total

CPU usage is the same, but the distribution of the CPU usage

over time slots is different. The simulation in Figure 4(b) is

more desirable because: (1) It minimizes the hardware costs

by lowering the maximum required CPU time. (2) It facilitates

the assignment of new runnables to an OS task, and hence,

enables the addition of new functions as it is typically done in

the incremental design of car manufacturers. (3) It reduces the

possibility of overloading CPU as the CPU time usage is less

likely to exceed the OS task cycle (i.e., 5ms) in any time slot.

Ideally, a CPU usage simulation is desirable if in each time

slot, there is a sufficiently large safety margin of unused CPU

time. Due to inaccuracies in estimating runnables’ execution

times, it is expected that the unused margin shrinks when the

system runs in a real car. Hence, the larger is this margin, the

lower is the probability of exceeding the limit in practice.

In this paper, we study the problem of minimizing bursts

of CPU time usage for a software system composed of a

large number of concurrent runnables. A known strategy to

eliminate high CPU usage bursts is to shift the start time

(offset) of runnables, i.e., to insert a delay prior to the start of

the execution of runnables [5]. Offsets of the runnables must

satisfy three constraints: C1. The offset values should not lead

to deadline misses, i.e., they should not cause the runnables to

run passed their periods. C2. Since the runnables are invoked

by OS tasks, the offset values of each runnable should be

divisible by the OS task cycle related to that runnable. C3. The

offset values should not interfere with data dependency and

synchronization relations between runnables. For example,

suppose runnables r1 and r 2 have to execute in the same time

slot because they need to synchronize. The offset values of r 1

and r 2 should be chosen such that they still run in the same

time slot after being shifted by their offsets.

There are four important context factors that are in line with

AUTOSAR [13], and have influenced our work:

CF1. The runnables are not memory-bound, i.e., the CPU

time is not significantly affected by the low-bound memory

allocation activities such as transferring data in and out of

the disk and garbage collection. Hence, our analysis of CPU

time usage is not affected by constraints related to memory

resources (see Section III-B).

CF2. The runnables are Offset-free [4], that is the offset of

a runnable can be freely chosen as long as it does not violate

the timing constraints C1-C3 (see Section III-B).

CF3. The runnables assigned to different OS tasks are

independent in the sense that they do not communicate with

one another and do not share memory. Hence, the CPU time

used by an OS task during each cycle is not affected by other

OS tasks running concurrently. Our analysis in this paper,

therefore, focuses on individual OS tasks.

CF4. The execution times of the runnables are remarkably

smaller than the runnables’ periods and the OS task cycles.

Typical OStask cycles arearound 1ms to 5ms. The runnables’

periods are typically between 10ms to 1s, while the runnables’

execution times are between 10ns = 10− 5ms to 0.2ms.

Our goal is to compute offsets for runnables such that the

CPU usage is minimized, and further, the timing constraints,

C1-C3, discussed earlier above hold. This requires solving

a constraint-based optimization problem, and can be done in

three ways: (1) Attempting to predict optimal offsets in a de-

terministic way, e.g., algorithms based on real-time scheduling

theory [6]. In general, these algorithms explore a very small

part of the search space, i.e., worst/best case situations only

(see Section V for a discussion). (2) Formulating the problem

as a (symbolic) constraint model and applying a systematic

constraint solver [14], [15]. Due to assumption CF4 above,

the search space in our problem is too large, resulting in

a huge constraint model that does not fit in memory (see

Section V for more details). (3) Using metaheuristic search-

based techniques [9]. These techniques are part of the general

class of stochastic optimization algorithms which employ

some degree of randomness to find optimal (or as optimal

as possible) solutions to hard problems. These approaches are

applied to awide range of problems, and are used in this paper.

I I I . SEARCH-BASED CPU USAGE M INIMIZATION

In this section, we describe our search-based technique for

CPU usage minimization. We first define a notation for our

problem in Section III-A. We formalize the timing constraints,
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Using runnable offsets (delay times) 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗ 

✔ 

Inserting runnables’ offsets 

Offsets have to be chosen such that 

the maximum CPU usage per time slot is minimized, and further, 

 the runnables respect their period 

 the runnables respect the OS cycles 

 the runnables satisfy their synchronization constraints 
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Meta heuristic search algorithms 

Case Study: an automotive software system with 430 runnables 

Running the system without offsets 

Simulation for the runnables in our case study and

corresponding to the lowest max CPU usage found by HC

5.34 ms 

Our optimized offset assignment 

2.13 ms 

- Search algorithms are used to search offset values balancing CPU 

usage 

- The objective function is the max CPU usage of a 2s-simulation of 

runnables 

- Single-state search algorithms for discrete spaces (HC, Tabu) 
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Conclusions 

- We developed a number of search 

algorithms to compute offset values 

that reduce the max CPU time needed 

- Our evaluation shows that our 

approach is able to generate 

reasonably good results for a large 

automotive system and in a small 

amount of time  

- Due to large number of runnables and 

the orders of magnitude difference in 

runnables periods and their execution 

times, we were not able to use 

constraint solvers 

- Current: Accounting for task time 

coupling constraints with multi-

objective search  trade-off between 

relaxing coupling constraints and 

maximum CPU time 
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Questions 

• What kinds of models need to be developed to 

support automated testing 

• How expensive is test modeling? 

• What are technologies enabling automated testing 

based on models? 

• How cost-effective is model-based testing (MBT)? 

• What are the limitations of MBT? 

• What are the open issues regarding MBT on which 

research and innovation are still needed? 
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What kinds of models? 

• What kinds of models need to be developed to support 

automated testing? 

• Four aspects:  

– Notation 

– Modeling Methodology 

• Scope 

• Level of detail 

• Factors:  

– Test objectives: Targeted faults, oracle.  

– Domain 

– Modeling skills and existing practice 

• Standards: UML, SysML, MARTE, BPMN 

– Often need to be tailored or specialized 
41 



How expensive is modeling? 

• From a few days to a few weeks, really depends on 

context 

• Test models are much simpler than the systems they 

purport to model 

• They can serve other purposes as well, e.g., 

specification, certification 

• The real question: modeling cost versus test 

automation savings 
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What kinds of technologies? 

• What are the enabler technologies for model-based testing? 

• Goal: test case and oracle generation  

– Find input values, sequences of events/operations satisfying 

properties based on models, e.g., path in a state machine 

– Derive oracles to detect failures at run-time, e.g., state 

invariants, valid output sequences, metamorphic rules 

– Timing or other performance measures may be relevant  

• Goals can be often re-expressed as an optimization or 

constraint solving problem 

– Constraint solvers, e.g., IBM CPLEX 

– Metaheuristic search, e.g., genetic algorithms 

– Main challenge: Scalability 
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Cost-Effective? 

• How cost-effective is MBT? 

 

− Modeling training & Tools 

− Modeling overhead 

+ Test automation scales up 

+ Regeneration of test suites when changes 

+ More systematic, more confidence 

+ Traceability: impact analysis, regression 

 

• Cost-benefit results vary according to these factors 

• My experience:  

– The benefits far outweigh the costs, especially when 

accounting for changes (e.g., requirements) 
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MBT Limitations? 

• Not applicable when the 

system or environment 

cannot be easily 

modeled with available 

notations and tools 

• Example: No (precise) 

condition can be 

identified to automate 

oracles at run-time 

• E.g., simulation, image 

segmentation, scientific 

computing 

45 
 



Open Issues? 

• Scalability of test case generation 

– Quick constraint solving 

• Tailoring modeling notations and methodologies to specific 

problems and domains 

– The number of combinations of problems and domains is 

large 

– Hence potential problems in tailoring commercial tools 

• Empirical studies 

– There are very few credible, well-reported empirical studies 

• Handling model changes 

– Impact analysis 

– Regression testing, e.g., selection, prioritization 
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FAQs 

• What if the model is incomplete or incorrect? 

– The purpose of MBT is automation, not proof 

– The model may change as a result of failure 

• Does MBT give me a proven test strategy? 

– No, but it enables you to define and automate one 

– There is not such thing as a universal, proven test strategy 

• Can’t I just buy and apply some commercial MBT tool? 

– How to apply MBT depends heavily on the domain, context, 

and test objectives 

– Heavy tailoring and investigation are required 

• Isn’t MBT too expensive to introduce and tailor to our needs? 

– manual testing (e.g., generation, oracle) is much more 

expensive and less effective 
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Conclusions 

• Despite much hype, the hardest testing problems (test case 

generation, oracle) are not (really) solved yet in most contexts 

• Modeling technology has matured (thanks in large part to OMG 

standardization efforts around the UML and MDA) 

• It is now easier to support Model-based testing (MBT) and 

integrate it with other development activities 

• MBT is a natural fit for companies using Model Driven 

Engineering (MDE), but is also suitable for those that are not 

– MBT is a good starting point for MDE 

• In many situations, model-based testing is the only way to 

achieve full test automation (scalability) – the question is not 

whether to adopt MBT, but how.  

• Much research and innovation is still required though and it 

must involve collaborations between research and industry 
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