ST

securilyandiristiu

The Thousands Shades of Model-Based
Testing: Pitfalls, Challenges, and Guidelines

University of Luxembourg
Interdisciplinary Centre for Security, Reliability and Trust
Software Verification and Validation Lab (www.svv.lu)

October 23rd, 2013
UCAAT, Paris, France

Lionel Briand, IEEE Fellow
ENR PEARL Chair il

LUSEBSIES

ST

Diversity

+{¢%+ de Guichet

Grand-Duché de Luxembourg

atieled region

de Guichet

Objectives

* Report on 20 years of experience in automated
software testing & verification research and
Innovation

« Explain why and how model-based testing is in many
situations—though not always—the best solution to
test automation

« Show why and how the tailoring of the MBT process
and technology to context is a key success factor

* Present representative project examples
 Identify challenges and lessons learned

 Guidelines
3

Testing vs. Verification

« Testing: The process of executing software with the
Intent of finding and correcting defects

« Verification: The process of analyzing a
representation or model of the system specification or
design in order to reason about its properties

 Verification takes place in earlier phases than testing:
feasibility of requirements, design decisions ...

« Will focus mostly on testing here, but there are many
common challenges, technologies, and lessons
learned

4
B 00000

ST

ndtrustlu

SnT Software Verification and Validation Lab

* SnT centre, Est. 2009: Interdisciplinary,
ICT security-reliability-trust

e 200 scientists and Ph.D. candidates, 20
Industry partners

« SVV Lab: Established January 2012,
WWW.SVV.|lu

« 20 scientists (Research scientists,
associates, and PhD candidates)

* Industry-relevant research on system
dependability: security, safety, reliability

« Six partners: Cetrel, CTIE, Delphi, SES,
IEE, Hitec ...

http://www.svv.lu

An Effective, Collaborative Model of Research ST
and Innovation ———

Innovation & Development

» Basic and applied research take place in a rich context

» Basic Research is also driven by problems raised by applied
research

il « Main motivation for SnT’s partnership program
UUUUUUU ;‘EDU 6

ST

securityandirstiu

Collaboration In Practice

« Research informed by practice

* Well-defined problems in context

« Realistic evaluation

« Long term industrial collaborations

Industry

Partners
(--------------- miaaT - -
Validation

Research

Groups

State of
the Art
Review

ST

secuniyandoruestiu

*“Model-based”?

« All engineering disciplines rely
on abstraction and therefore
models

* In many cases, it is the only way
to effectively automate testing or
verification => scalability

* Models have many other
purposes: Communication,
support requirements and design

 There are many ways to model
systems and their environment

* In a given context, this choice is
driven by the application domain,
standards and practices,
objectives, and skills

ST

securityandirstiu

Models in Software Engineering

 Model: An abstract and analyzable description of software
artifacts, created for a purpose

Reguirements models Architecture

models Behavioural Test
models models

« Abstract: Details are omitted. Partial representation. Much
smaller and simpler than the artifact being modeled.

 Analyzable: Leads to task automation

« Standards: UML, SySML, MARTE, BPMN, ...

Test Automation Problem m

Driver

secuniyandoruestiu

Decomposition
executes
| SWUnderTest [~--- -~
N\
creates / uses 1
_____ =TT OUtpUtS
Stub(s) ;
\\ _______________
\ - -
\ o
¥
Oracle—————____, Verdict

(correct/incorrect)

Automation Needs

« Test case generation

« Test oracle (verdict) generation

« Test stubs generation

« Test driver generation (test execution)

« Logging and analysis of test results

« Test suite evolution, e.g., requirements changes

ST

secuniyandoruestiu

Common Testing Technology

« Test case generation

« Test oracle (verdict) generation

« Test stubs generation

« Test driver generation (test execution)

« Logging and analysis of test results

« Test suite evolution, e.g., requirements changes

ST

secuniyandoruestiu

Consequences

 Test automation not scalable

« EXxpensive (generation and evolution), though costs
often hidden

* Error-prone
* Not systematic
* Not predictable

Mental
Model

Test Objectives

1

Test Analysis

System or
Environment
Models

=
4B

Oracles

Me—

>
%

Test suites &
scripts

Test Stubs

"%

Test Results

SIT

securityandrestiu

MBT Process

ST

secuniyandirustiu

Testing Driven by Environment Modeling

Context S"'l'

secuniyandirustiu

* Three-year project with two industry partners

— Soft real-time systems: deadlines in order of
hundreds of milliseconds

« Jitter of few milliseconds acceptable

— Automation of test cases and oracle generation,
environment simulation

WesternGeco — Marine Seismic
Tomra — Bottle Recycling Machine Acquisition System

16

Environment Modeling and Simulation SNT

secuniyandirustiu

Independent
— Black-box

« Behavior driven by
I v
environment (2

— Environment model

Environment Models

R

« Test Engineers: Software
engineers
« No use of Matlab/Simulink . B>

e One model for
— Environment simulator \
— Test cases and oracles
Environment Test cases

« UML profile (+ limited use of Simulator
MARTE)

Test oracle

Domain Model SNT

secuniyandirustiu
AR\ m

Y

i ks

‘-m.

«MonDeterministics
b‘ Sorter:imovedrmTimelC {lowerBound = 280, upperBound = 320, scope = skate}

Sorter: imovedrmTimeCR {lowerBound = 2580, upperBound = 320, scope = skake}

<«MNaonCeterministics
User:insertionTime {lowerBound = 1, upperBound = 10000, scope = state}

1

[—rvm

#Conkexks «Conkexks
= R¥Mm 1 E user
= notRoutingFlag ¢ Boolzan [Eg count : Integer siontexks
-E;i, #signals user_inserts_jtem() vm =] zMonDeterminiskics insertionTime : Integer E Sorter
ignalz SUT_jk ived ignal d=_it T .
% :z:g::lz ITEﬁl fgﬁ-f{r;we g 3, «signale rvm_sends_item() (£ #MonDeterministic: movearmTimelC : Integer
= 3 - currentlte [, *MonDeterministice maveArmTimeR : Integer
1 N .
o deskination : String
L |- rvm - currertitem ﬁ: «signals POSITION_RIGHT()

ﬂ; «signals POSITION CEMTREL])
ﬁ% #signaks POSITION_LEFT
e 8% «signals ikem_at_destinationd) 18

Ike
ItEIIIi SLITIE U IO ST DI I = 200, UPPErougid = L1ug, SLUpE = Siducy

0.1

Behavior Model SNT

secuniyandoruestiu

w_onkexks
Sorter

=] «MonDeterministic: movedrmTimelC ¢ Integer
=] <MonDeterministics movedrmTineCR : Integer
destination : String

.ﬁi‘i, «signals POSITION_RIGHT()

ﬂ» #signals POSITION_CEMTRED)

g3 ssignale POSITION_LEFT()
8% esignale item_at_destination!)

= Sorter

neckiont);

| e ,l'au:tiu:un.;

T POSITION_CENTREL)
@@ [destination = "centrg”;

“Errors

?{i itk _at_deskination)
& Error Skake 1

?'E' POSITION_RIGHT() Rion.= ceae] S Y "I'I'IIZI".-'E-'-':'-rmTi;ﬁeCRJ ms"
o) Effect B ination = 'right']
=]

Y& POSITION_CEMTREC)
3 Jdestination = "centre”

?ﬁ after "movedrmTimelC, ms"

|((S MwingLeFtCentrej
=

dskination = 'left'] e - TON_LEFT()
) POSITION LEFT() ation = left"
i@ [destination = "lefy’; = & MovingCentreRight
[self . destination = 'centre’] T -

| Pﬁt:i;ll II(,_ "right"; T
L Centre
ﬂf‘:‘_l_‘\,'l . A J-g

Automated Test Case Generation and Oracles ST

secuniyandirustiu

Test cases are defined by

— Simulation configuration
— Environment configuration
« Environment Configuration

— Number of instances to be created for each component in
the domain model (e.g., the number of sensors)

« Simulator Configuration
— Setting of non-deterministic attribute values

« Bring the system state to an error state by searching for
appropriate values for non-deterministic environment
attributes

« Search metaheuristics to search the test case space
« Test oracle: Environment model error states (state invariants)

20

ST

secuniyandirustiu

Testing Closed Loop Controllers

Complexity and amount of software used on vehicles’ S"'[
Electronic Control Units (ECUs) grow rapidly et

Comfort and variety

More functions Safety and reliability

Faster time-to-market Greenhouse gas emission laws

Less fuel consumption -

Three major software development stages in ST

the a UtomOtlve doma I n secunityandbnestiu
4 .)
(Model-in-the-Loop) (Software-in-the-Loop) Hardwargt-ln-the-Loop
age
Stage) L Stage) . g)
e N e ~ (" ,)
Simulink Modeling Code Generation Software Running
i and Integration on ECU
Generic i
Functional Software
4 Model Release
MiL Testing SiL Testing HiL Testing
Wit program
\\ J \\ J J

23

Major Challenges in MiL-SiL-HiL Testing ST

MATLAB
SIMULINK '

« Manual test case generation

« Complex functions at MiL, and large and integrated
software/embedded systems at HiL

« Lack of precise requirements and testing objectives

« Hard to interpret the testing results o

MiL testing m

secuniyandirestlu

Requirements

MATLAB
SIMULINK

Individual Functions

(

The ultimate goal of MIL testing is to —
ensure that individual functions

behave correctly and timely on any
hardware configuration

A Taxonomy of Automotive Functions SIT

securityandtrustiu

unit convertors calculating positions, Staté maChWCIosec‘l—loop N

duty cycles, etc controllers controllers (P%

Different testing strategies are required for
different types of functions

26

ST

Controller Plant Model and its Requirements st

Desired value 4 g Error | controller Plant |System output
ﬂ ———— —
™ (sun Model
Actual value
@) Liveness (b) Smoothness (c) Responsiveness
A l [\ J=w A
>
= v >T~= 0 v N —
c_as - ———— ko I o > |Y>=
(&}
<
o
13) *Z
S
©
g Desired Value
8 Actual Value
Q
time time time

27

MiL-Testing of Continuous Controllers SIT

secuniyandirustiu

Objective 7’1\\
Functions Dor;1ain List of
+ Exploration . Local Search) e Test
Controller- Expert Regions Scenarios
plant model R
Overview
Diagram
1.0
Graph Builder
o Final vs. Initial 09 | Desired Value
Smoothness q Actual Value
0.100 Initial Desired
0.9 B ' 0.150 0.8 -
0.200 b
08 l 0.250 0.7 A
0.300
0.6 -
0.5 A
2 0.4
o3 4 y)
Final Desired
0.2 -
o, 4 Y
0.0 T
0 1 2
0.00.0 0.1 02 03 0.4 05 06 0.7 0.8 0.9 1.0 2 8

Initial) ’ ' ’ ’ time

Search Strategy SIT

secuniyandiristiu

« Search:
 Inputs: Initial and desired values, configuration parameters
« Example search technique: (1+1) EA (Evolutionary Algorithm)

« Search Objective:

 Find worst case scenarios for liveness, smoothness,
responsiveness -> objective functions

 [For each scenario -> simulation

0.7 . . .
06
.
05}
. -

0.4 T
03}
0.2}
0.1

)

o 0.05 0.1 0.15

e Result:

* WOrst case scenarios or values to the input variables that are
more likely to break the requirement at MiL level

* stress test cases based on actual hardware (HiL) 23

—

Random Search vs. (1+1)EA
Example with Responsiveness Analysis

ST

secuniyandirustiu

Responsiveness Responsiveness

0.210+ 0.210

0.205

0.205

0200/ | 4+ 0.200-

i
i 0.195+
T

0.195+" |

0.190- 4/

019077

0.185 —————————— B .
0 20 40 60 80 100 0 20 40 60 80 100

Iterations Iterations

Random (1+1) EA

30
B 00000

Conclusions SNT

secuniyandirustiu

« We found much worse scenarios during MiL testing than our
partner had found so far

« They are running them at the HiL level, where testing is much
more expensive: MiL results -> test selection for HIL

« But further research is needed:
— To deal with the many configuration parameters
— To dynamically adjust search algorithms in different

(a)

040 T A | ifness 020 Tracking

0.39 20 019 o |[—ooso
0.220 00158

038 e 018 0o

n.o1e7

0.280

037 pa 017 I 00172
0.320 noi7a

0.36 v 0.16

035 015

034 014

033 013

032 012

031 011

030 | A 010

T T T T T T T T T
070 071 072 073 074 075 076 0.77 078 0.79 0.80 090 091 092 093 094 095 096 097 098 099 100 31

MBT Projects Sample (< 5 years) @

secuniyandoruestiu

Robot controller Safety Constraint Solver
Cisco Video conference Robustness UML profile Metaheuristic
Kongsberg Maritime Oil&gas, safety critical CPU usage UML+MARTE Constraint Solver
drivers
WesternGeco Marine seismic Functional testing UML profile + MARTE Metaheuristic
acquisition
SES Satellite operator Functional testing UML profile Metaheuristic
Delphi Automotive systems Testing Matlab/Simulink Metaheuristic
safety+performance
Lux. Tax department Legal & financial Legal Requirements UML Profile Under investigation

testing

secuntyandinestiu

Verifying CPU Time Shortage Risks in
Integrated Embedded Software

Today’s cars rely on integrated systems SIT

secuniyandirestiu

* Modular and independent development

« Many opportunities for division of labor and
outsourcing

* Need for reliable and effective integration

processes
34

Integration process in the automotive domain SIT

OEM

AUTOSAR Models 4_

%& > Glue

|
AUTOSAR Models
‘ sw runnables

DelLPHI

Automotive Systems

35

CPU Time Shortage in Integrated Embedded SIT
Software scyandrostl

« Challenge

— Many OS tasks and their many runnables run within a limited

available CPU time
« The execution time of the runnables may exceed the OS cycles

* Qur goal

— Reducing the maximum CPU time used per time slot to be

able to
* Minimize the hardware cost
« Enable addition of new functions incrementally
* Reduce the probability of overloading the CPU in practice

(2) e - - — = — —

v

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

0) _— @ e s s =

v

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

36

—

Using runnable offsets (delay times) m

secuniyandirstiu

]nsertmg runnables’ oﬁ’sets

10ms 15ms 20ms 25ms 30ms 35ms 40ms /‘/

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,
the runnables respect their period
the runnables respect the OS cycles
the runnables satisfy their synchronization constraints

Meta heuristic search algorithms SIT

securityandiristiu

- Search algorithms are used to search offset values balancing CPU
usage

- The objective function is the max CPU usage of a 2s-simulation of
runnables

- Single-state search algorithms for discrete spaces (HC, Tabu)

Case Study: an automotive software system with 430 runnables
213 ms —mMmMm8 ———mmm@m@M@M@M@mM@8mMm@

534ms | .

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Running the system without offsets Our optimized offset assignment

38

Conclusions SIT

secuntyandirestiu

- We developed a number of search
algorithms to compute offset values
that reduce the max CPU time needed

- Our evaluation shows that our
approach is able to generate
reasonably good results for a large
automotive system and in a small
amount of time

- Due to large number of runnables and
the orders of magnitude difference in
runnables periods and their execution
times, we were not able to use
constraint solvers

- Current: Accounting for task time
coupling constraints with multi-
objective search - trade-off between
relaxing coupling constraints and 39
maximum CPU time

—

Questions

What kinds of models need to be developed to
support automated testing

How expensive is test modeling?

What are technologies enabling automated testing
based on models?

How cost-effective is model-based testing (MBT)?
What are the limitations of MBT?

What are the open issues regarding MBT on which
research and innovation are still needed?

What kinds of models?

« What kinds of models need to be developed to support
automated testing?

* Four aspects:
— Notation
— Modeling Methodology
e Scope
» Level of detall
* Factors:
— Test objectives: Targeted faults, oracle.
— Domain
— Modeling skills and existing practice
« Standards: UML, SysML, MARTE, BPMN

— Often need to be tailored or specialized 41

How expensive Is modeling?

From a few days to a few weeks, really depends on
context

Test models are much simpler than the systems they
purport to model

They can serve other purposes as well, e.g.,
specification, certification

The real question: modeling cost versus test
automation savings

SIT

securityandirstiu

What kinds of technologies?

* What are the enabler technologies for model-based testing?
« Goal: test case and oracle generation

— Find input values, sequences of events/operations satisfying
properties based on models, e.g., path in a state machine

— Derive oracles to detect failures at run-time, e.g., state
Invariants, valid output sequences, metamorphic rules

— Timing or other performance measures may be relevant

« Goals can be often re-expressed as an optimization or
constraint solving problem

— Constraint solvers, e.g., IBM CPLEX
— Metaheuristic search, e.g., genetic algorithms
— Main challenge: Scalability
43

ST

secuniyandoruestiu

Cost-Effective?

« How cost-effective is MBT?

— Modeling training & Tools

— Modeling overhead

Test automation scales up

Regeneration of test suites when changes
More systematic, more confidence
Traceability: impact analysis, regression

« Cost-benefit results vary according to these factors
* My experience:
— The benefits far outweigh the costs, especially when

accounting for changes (e.g., requirements)
44

securityandirstiu

MBT Limitations?

* Not applicable when the
system or environment
cannot be easily
modeled with available
notations and tools

 Example: No (precise)
condition can be
Identified to automate
oracles at run-time

 E.g., simulation, image
segmentation, scientific
computing

ST

securityandirstiu

Open Issues?

« Scalability of test case generation
— Quick constraint solving

« Tailoring modeling notations and methodologies to specific
problems and domains

— The number of combinations of problems and domains is
large

— Hence potential problems in tailoring commercial tools
« Empirical studies

— There are very few credible, well-reported empirical studies
« Handling model changes

— Impact analysis

— Regression testing, e.g., selection, prioritization

46
B 00000

FAQS

 What if the model is incomplete or incorrect?

— The purpose of MBT Is automation, not proof

— The model may change as a result of failure
 Does MBT give me a proven test strategy?

— No, but it enables you to define and automate one

— There is not such thing as a universal, proven test strategy
« Can't|just buy and apply some commercial MBT tool?

— How to apply MBT depends heavily on the domain, context,
and test objectives

— Heavy tailoring and investigation are required
* Isn’t MBT too expensive to introduce and tailor to our needs?

— manual testing (e.g., generation, oracle) is much more

expensive and less effective 47

Conclusions

« Despite much hype, the hardest testing problems (test case
generation, oracle) are not (really) solved yet in most contexts

* Modeling technology has matured (thanks in large part to OMG
standardization efforts around the UML and MDA)

* Itis now easier to support Model-based testing (MBT) and
Integrate it with other development activities

 MBT is a natural fit for companies using Model Driven
Engineering (MDE), but is also suitable for those that are not

— MBT is a good starting point for MDE

* In many situations, model-based testing is the only way to
achieve full test automation (scalability) — the question is not
whether to adopt MBT, but how.

* Much research and innovation is still required though and it

must involve collaborations between research and industry
48

SIT

Selected References

L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems”, Genetic
Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

« M. Shousha, L. Briand, and Y. Labiche, “UML/MARTE Model Analysis Method
for Uncovering Scenarios Leading to Starvation and Deadlocks in Concurrent
Systems”, IEEE Transactions on Software Engineering 38(2), 2012.

« Z.lIgbal, A. Arcuri, L. Briand, “Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time Embedded Software”, ACM
ISSTA 2012

 S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand, “Modeling and Analysis of
CPU Usage in Safety-Critical Embedded Systems to Support Stress Testing”,
ACM/IEEE MODELS 2012

* S. Nejati, Mehrdad Sabetzadeh, D. Falessi, L. C. Briand, T. Coq, “A SysML-
based approach to traceability management and design slicing in support of
safety certification: Framework, tool support, and case studies”, Information &
Software Technology 54(6): 569-590 (2012)

« L. Briand et al., “Traceability and SysML Design Slices to Support Safety
Inspections: A Controlled Experiment”, forthcoming in ACM Transactions on

Software Engineering and Methodology, 2013
49

SIT

Selected References (cont.)

« Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel C. Briand:
Supporting the verification of compliance to safety standards via model-driven
engineering: Approach, tool-support and empirical validation. Information &
Software Technology 55(5): 836-864 (2013)

* Razieh Behjati, Tao Yue, Lionel C. Briand, Bran Selic: SimPL: A product-line
modeling methodology for families of integrated control systems. Information &
Software Technology 55(3): 607-629 (2013)

« Hadi Hemmati, Andrea Arcuri, Lionel C. Briand: Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1): 6
(2013)

* Nina Elisabeth Holt, Richard Torkar, Lionel C. Briand, Kai Hansen: State-Based
Testing: Industrial Evaluation of the Cost-Effectiveness of Round-Trip Path and
Sneak-Path Strategies. ISSRE 2012: 321-330

 Razieh Behjati, Tao Yue, Lionel C. Briand: A Modeling Approach to Support the
Similarity-Based Reuse of Configuration Data. MoDELS 2012: 497-513

« Shaukat Ali, Lionel C. Briand, Andrea Arcuri, Suneth Walawege: An Industrial

Application of Robustness Testing Using Aspect-Oriented Modeling,
UML/MARTE, and Search Algorithms. MoDELS 2011: 108-122

50
B 00000

