_

Sopra

group m

Efficient Test Automation on an
Agile Project

Presentation for UCAAT, October 2013
Lukasz Grabinski & Jackie McDougall

TALENTED E TOGETHER

J Agenda

The Client & the Project

Implementing Automation

Tools, tools, tools

Application Overview

Evolution (DSL, Data, Structure)

Making the Process Work

Q&A

Sopra

The Client & the Project

= Business Background

m Our client provides financial support to students, providing loans and non-repayable grants for living, studying
and tuition costs

m Smooth on-line loan application process is essential
m aligned with the Government’s ‘Digital by Default’ strategy
m a positive experience for students

m process of managing loans is extremely complex

= Project Background

m existing web portal was confusing for customers, with each loan application on average resulting in 3.6 calls
to the call centre for additional support.

m cost of avoidable contact was £2.9 million per year
m customer satisfaction was measured at 64% dissatisfied.
m move towards modern service provision via the development of a new customer web portal.

m aim is to drive traffic away from the call centre towards fully capturing applications on the web.

Sopra

group m

Sopra Group — Test Services

J Implementing Automatione

~ Define a lot

Keep fixing of manual
it. test
procedures

Purchase an

Builda expensive
comprehenswe GU| test
test library and execution

fromework tool

Hire an
automation team
to automate
each procedure

N

Sopra

group m

Implementing Automation /

Processes People Tools

§
b Y "ﬂ

D

Sopra

group = Sopra Group — Test Services

http://images.google.co.uk/imgres?imgurl=http://www.nswohs.com.au/wp-content/uploads/2009/04/toolbox.jpg&imgrefurl=http://www.nswohs.com.au/?p=29&usg=__76qc_DcIzuQ9p0bn9P47KNDsdJE=&h=326&w=350&sz=9&hl=en&start=3&tbnid=5up6IAZ7UH_LzM:&tbnh=112&tbnw=120&prev=/images?q=toolbox&gbv=2&hl=en&safe=off

J Application - overview

m Web portal to create, manage, submit and track application with captured
customer data

m Multiple screens

m Many paths throughout the application process

m Various data capture — from simple Yes/No to complex recursive data objects
m [ntegration with multiple legacy systems through web services

m High focus on the usability and user experience aspects

Sopra

group = Sopra Group — Test Services

.I Tools, tools, tools
ﬁ % * (:—(g)
Gherkin E;\Tg

Java
D Cucumber

Pickles

Evolution: DSL - your friend or enemy?¢

m Before: No upfront DSL design led to over 600 step definitions, causing:
m Minimal reuse of the existing steps/code
m Lack of clear understanding what step does and how
m No practical use of the tests as documentation of system to business

m High cost of step implementation

m Difficult maintenance and increasing technical debt in the test code
m After: Core of ~30 designed, parameterised steps used in 95% of the tests
m Easy test creation — using steps as templates with parameters published in the project wiki
m Clear understanding what to expect from the step
m Tests useful for the analysts, testers, developers and business
m High reusability
m Test automation effort reduced several times over
m Allow to use defined (business journeys) or explicit data (component/system tests)

m Limited number of additional, component test focused steps

Sopra

group = Sopra Group — Test Services

J DSL - Examples:

m Before:
“l click Next button”

m “Button Yes has been clicked”

m “l have clicked Save button”

m “l use the previous page link”
m After:

m “l click the (.*) ”
m All available buttons and links published on wiki
m New elements easy to add to the mapping table (abstraction layer)

Sopra

group m

Evolution: Data — drives tests or you crazye

m Before: No test data design or approach, causing:
m Complex and difficult to understand scenarios

m High duplication of steps in test scenarios

m Difficult test data management
m Reduced coverage of tests
m After: Test data designed and stored as “persona” concept
m Persona’s data leads to user story or specific test path with desired data
m Short and concise scenario — 2 steps to get to any point in the application process
m Easy data management
m Higher coverage at lower cost

m Faster test execution — ability to create application with required data through web services allow
direct jump to page directly rather than using Selenium

Sopra

group = Sopra Group — Test Services

J Data - Examples:

m Before:

“l login as user JOHN SMITH”

“l answer X for the first question”

“l enter A data”

“l answer Y for the second question”
“l enter B data”

“l answer Z for the second question”
“l enter C data”

“I click Next button”

“l am navigated to the next page”
“My first question data is A”

“My second question data is B”

“My third question data is C”

m After:

m “l am logged in persona JOHN SMITH on page X”
m “l have completed page Y until and including question Z”
m “My first page data is persisted”

| Sopra

group m

Evolution: “ld"entity your page elements

m Before: No abstraction from maze HTML ids, causing:

m Difficult test creation

<HTML>

<title>HTML</title>

m Confusing test scenarios and thus system documentation

m More complex and less readable tests
m After: Mapping abstraction layer — from HTML id (part id) to a name
m Meaningful name of the component — be it a button, field or an error message
m Clear to understand tests and thus system documentation
m Easy to manage and update

m Single place — no confusion where to look for

Sopra

group m

Sopra Group — Test Services

Evolution: Structure your tests

a0 [Ti|o[U[8rh|in[K|in

m Before: No clear structure and purpose for the tests, causing: oMivo| N [S |AlFe T ¥ | P | H¥
S| ¥[mM8|oLlS | GalBell

= Difficult test management Pjo | P [EFALP |Fa %Eq In
H Al P |

N : S[Alre[TI ¥ Er|de|n|C|¥
m Duplication of scenarios across tests b :

I [Pm r é p Er

m Missed crucial scenarios
m Tests as documentation difficult to use by business
m After: Split into “Journey”, “Page” and “Component” tests.

m “Journey” tests are user story related scenarios - UAT if you like - taking persona for a journey through
the full or part of the application process

m “Page” tests are classed as system tests, providing more detailed coverage for the specific page,
business logic or data handling

m “Component” tests are focused on specific components of the application — such as numeric data
capture field or address capture, providing most detailed coverage

m Clear view what tests are required and what level of coverage are to be achieved

m Easier test scenarios / execution management and partitioning

Sopra

group m

Sopra Group — Test Services

Q

w
A % Draft tests Finalise tests
sl (parameterised step
DQ_ g o templates)
< DSL, DATA, STRUCTURE:
i Use plain English (structured);
Wiite for Component level; Page level; Journey
level— will vary frem project to project/application
to application
Tester/BA
Q@
Qo
Q
[0)
o
o5 Gherkin (a business readable DSL; few rules,
S o keyword driven)
= <
23
[o R
L
Sy
s
Before the 3 During the 3 Amigos
Amigos meeting meeting
c
0]
ey
2
+ Good agile » Can set up test on the Cl
practice » Easierto maintain tests
. Well + Easierfor businessto
2 documented understand
L framework « Difficultto introduce
2 defects

0 — At start of project build the skeleton automation framework
1 - Depending on the project - either BA prepares the gherkins as the base stories or tester
prepares the drafts based on stories; but good agile practice is to collaborate & talk to each

other often (not as a separate task)

2 - 99% of time it's more practicalto build code first, automate tests later - with an overlap;
automate tests sometimes could start when build of code starts, sometimes later

Start to
Build
Code

Dev

After 3
Amigos
meeting

Making the Process Work

v

Automate tests

Continue to
Build Code

Run tests

Examine test results

Interprets & runs
the feature files;

Testtools engineer/
dev

(once done, check with

Tester/BA as required)

Cucumber (for Java)
- parses & executes
Gherkin commands

Starts after 3 Amigos
meeting, tests written
and code stable
enough to execute on;
but can'tfinish until all
code built

* No manual tests to
maintain — straight to
automation

* Improved
collaboration
between dev & test

Dev

After tests
automated

* In Dev Testing
(before check-
in)

Drives the actions
from the automated
test tool

Cl Server

Selenium Webdriver
(for Java) creates
robust, browser-based
automation, & can scale
[distribute scripts
across many
environments

When code committed
to Cl server

+ Faster feedback loop

+ Faster fix time

+ Find Challenging
/Obscure Defects
Early

+ Vast safety net

Watch passed tests on
Cl with a smilg;

check for failed tests

Tester

Cl plug-ins
To present results

Pickles

(Parses the results of
the successfultests)

When automated tests
completed

*Increased Tester Focus

3 - Cucumber/Javais what we applied, You could use alternative tools like Twist, Cucumber &

Ruby, Capybara, C# etc.
4 - After 3 amigos, you can tag the tests with appropriate annotation, and have them executed

on the Cl in a separate job (for example "Work In progress), so from a progress perspective it

is clear how much work is still to be completed in-sprint.

Thank You

Sopra

group = Sopra Group — Test Services

